|
import torchvision.transforms as transforms |
|
from torch.nn.parallel.data_parallel import DataParallel |
|
import torch.backends.cudnn as cudnn |
|
import argparse |
|
import json |
|
import torch |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import os |
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
|
|
from segment_anything import build_sam, SamPredictor |
|
|
|
|
|
|
|
import sys |
|
sys.path.insert(0, 'grounded-sam-osx') |
|
from osx import get_model |
|
from config import cfg |
|
from utils.preprocessing import load_img, process_bbox, generate_patch_image |
|
from utils.human_models import smpl_x |
|
|
|
os.environ["PYOPENGL_PLATFORM"] = "egl" |
|
from utils.vis import render_mesh, save_obj |
|
cudnn.benchmark = True |
|
|
|
def load_image(image_path): |
|
|
|
image_pil = Image.open(image_path).convert("RGB") |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image_pil, image |
|
|
|
|
|
def load_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
|
print(load_res) |
|
_ = model.eval() |
|
return model |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
|
|
return boxes_filt, pred_phrases |
|
|
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_box(box, ax, label): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
if 'person' in label.lower() or 'human' in label.lower(): |
|
color = 'green' |
|
else: |
|
color = 'blue' |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor=color, facecolor=(0, 0, 0, 0), lw=2)) |
|
ax.text(x0, y0-5, label, fontsize=5, color='white',bbox={'facecolor': color, 'alpha': 0.7, 'pad': 1, 'edgecolor': 'none'}) |
|
|
|
def save_mask_data(output_dir, mask_list, box_list, label_list): |
|
value = 0 |
|
|
|
mask_img = torch.zeros(mask_list.shape[-2:]) |
|
for idx, mask in enumerate(mask_list): |
|
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(mask_img.numpy()) |
|
plt.axis('off') |
|
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0) |
|
|
|
json_data = [{ |
|
'value': value, |
|
'label': 'background' |
|
}] |
|
for label, box in zip(label_list, box_list): |
|
value += 1 |
|
name, logit = label.split('(') |
|
logit = logit[:-1] |
|
json_data.append({ |
|
'value': value, |
|
'label': name, |
|
'logit': float(logit), |
|
'box': box.numpy().tolist(), |
|
}) |
|
with open(os.path.join(output_dir, 'mask.json'), 'w') as f: |
|
json.dump(json_data, f) |
|
|
|
def bbox_resize(bbox, scale=1.0): |
|
center = (bbox[2:] + bbox[:2]) / 2 |
|
new_size = (bbox[2:] - bbox[:2]) * scale |
|
new_bbox = torch.cat((center - new_size / 2, center + new_size / 2)) |
|
return new_bbox |
|
|
|
def mesh_recovery(original_img, bboxes): |
|
transform = transforms.ToTensor() |
|
original_img_height, original_img_width = original_img.shape[:2] |
|
|
|
vis_img = original_img.copy() |
|
for bbox in bboxes: |
|
bbox = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]] |
|
bbox = process_bbox(bbox, original_img_width, original_img_height) |
|
img, img2bb_trans, bb2img_trans = generate_patch_image(original_img, bbox, 1.0, 0.0, False, cfg.input_img_shape) |
|
img = transform(img.astype(np.float32)) / 255 |
|
img = img.cuda()[None, :, :, :] |
|
|
|
|
|
inputs = {'img': img} |
|
with torch.no_grad(): |
|
out = model(inputs, 'test') |
|
mesh = out['smplx_mesh_cam'].detach().cpu().numpy()[0] |
|
|
|
|
|
|
|
|
|
focal = [cfg.focal[0] / cfg.input_body_shape[1] * bbox[2], cfg.focal[1] / cfg.input_body_shape[0] * bbox[3]] |
|
princpt = [cfg.princpt[0] / cfg.input_body_shape[1] * bbox[2] + bbox[0], |
|
cfg.princpt[1] / cfg.input_body_shape[0] * bbox[3] + bbox[1]] |
|
rendered_img, _ = render_mesh(vis_img[:, :, ::-1], mesh, smpl_x.face, {'focal': focal, 'princpt': princpt}) |
|
vis_img = rendered_img.copy() |
|
|
|
return rendered_img |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True) |
|
parser.add_argument("--config", type=str, required=True, help="path to config file") |
|
parser.add_argument( |
|
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file" |
|
) |
|
parser.add_argument( |
|
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file" |
|
) |
|
parser.add_argument( |
|
"--osx_checkpoint", type=str, required=True, help="path to checkpoint file" |
|
) |
|
parser.add_argument("--input_image", type=str, required=True, help="path to image file") |
|
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt") |
|
parser.add_argument( |
|
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory" |
|
) |
|
|
|
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold") |
|
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold") |
|
|
|
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False") |
|
args = parser.parse_args() |
|
|
|
|
|
config_file = args.config |
|
grounded_checkpoint = args.grounded_checkpoint |
|
sam_checkpoint = args.sam_checkpoint |
|
osx_checkpoint = args.osx_checkpoint |
|
image_path = args.input_image |
|
text_prompt = args.text_prompt |
|
output_dir = args.output_dir |
|
box_threshold = args.box_threshold |
|
text_threshold = args.text_threshold |
|
device = args.device |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
image_pil, image = load_image(image_path) |
|
|
|
model = load_model(config_file, grounded_checkpoint, device=device) |
|
|
|
|
|
image_pil.save(os.path.join(output_dir, "raw_image.jpg")) |
|
|
|
|
|
boxes_filt, pred_phrases = get_grounding_output( |
|
model, image, text_prompt, box_threshold, text_threshold, device=device |
|
) |
|
|
|
|
|
sam = build_sam(checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
predictor = SamPredictor(sam) |
|
image = cv2.imread(image_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
predictor.set_image(image) |
|
|
|
|
|
model = get_model() |
|
model = DataParallel(model).cuda() |
|
ckpt = torch.load(osx_checkpoint) |
|
model.load_state_dict(ckpt['network'], strict=False) |
|
model.eval() |
|
|
|
size = image_pil.size |
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) |
|
|
|
masks, _, _ = predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes, |
|
multimask_output=False, |
|
) |
|
|
|
|
|
boxes_human = [] |
|
for i, label in enumerate(pred_phrases): |
|
if 'person' in label.lower() or 'human' in label.lower(): |
|
boxes_filt[i] = bbox_resize(boxes_filt[i], scale=1.1) |
|
boxes_human.append(boxes_filt[i]) |
|
|
|
|
|
for i, label in enumerate(pred_phrases): |
|
if 'person' in label.lower() or 'man' in label.lower(): |
|
boxes_human.append(boxes_filt[i]) |
|
rendered_img = mesh_recovery(image, boxes_human) |
|
cv2.imwrite(os.path.join(output_dir, "grounded_sam_osx_output.jpg"), rendered_img) |
|
|
|
|
|
fig, (plt1, plt2) = plt.subplots(ncols=2, figsize=(10, 20), gridspec_kw={'wspace':0, 'hspace':0}) |
|
|
|
plt1.imshow(image) |
|
for mask in masks: |
|
show_mask(mask.cpu().numpy(), plt1, random_color=True) |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
show_box(box.numpy(), plt1, label) |
|
rendered_img = cv2.imread(os.path.join(output_dir, "grounded_sam_osx_output.jpg")) |
|
plt2.imshow(rendered_img) |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
show_box(box.numpy(), plt2, label) |
|
plt1.axis('off') |
|
plt2.axis('off') |
|
plt.savefig( |
|
os.path.join(output_dir, "grounded_sam_osx_output.jpg"), |
|
bbox_inches="tight", dpi=300, pad_inches=0.0 |
|
) |
|
|
|
save_mask_data(output_dir, masks, boxes_filt, pred_phrases) |
|
|
|
|
|
|