|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from typing import Type |
|
|
|
|
|
class MLPBlock(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
mlp_dim: int, |
|
act: Type[nn.Module] = nn.GELU, |
|
) -> None: |
|
super().__init__() |
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim) |
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim) |
|
self.act = act() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.lin2(self.act(self.lin1(x))) |
|
|
|
|
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
self.bias = nn.Parameter(torch.zeros(num_channels)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
def val2list(x: list or tuple or any, repeat_time=1) -> list: |
|
if isinstance(x, (list, tuple)): |
|
return list(x) |
|
return [x for _ in range(repeat_time)] |
|
|
|
|
|
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: |
|
x = val2list(x) |
|
|
|
|
|
if len(x) > 0: |
|
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] |
|
|
|
return tuple(x) |
|
|
|
|
|
def list_sum(x: list) -> any: |
|
return x[0] if len(x) == 1 else x[0] + list_sum(x[1:]) |
|
|
|
|
|
def resize( |
|
x: torch.Tensor, |
|
size: any or None = None, |
|
scale_factor=None, |
|
mode: str = "bicubic", |
|
align_corners: bool or None = False, |
|
) -> torch.Tensor: |
|
if mode in ["bilinear", "bicubic"]: |
|
return F.interpolate( |
|
x, |
|
size=size, |
|
scale_factor=scale_factor, |
|
mode=mode, |
|
align_corners=align_corners, |
|
) |
|
elif mode in ["nearest", "area"]: |
|
return F.interpolate(x, size=size, scale_factor=scale_factor, mode=mode) |
|
else: |
|
raise NotImplementedError(f"resize(mode={mode}) not implemented.") |
|
|
|
|
|
class UpSampleLayer(nn.Module): |
|
def __init__( |
|
self, |
|
mode="bicubic", |
|
size=None, |
|
factor=2, |
|
align_corners=False, |
|
): |
|
super(UpSampleLayer, self).__init__() |
|
self.mode = mode |
|
self.size = val2list(size, 2) if size is not None else None |
|
self.factor = None if self.size is not None else factor |
|
self.align_corners = align_corners |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return resize(x, self.size, self.factor, self.mode, self.align_corners) |
|
|
|
|
|
class OpSequential(nn.Module): |
|
def __init__(self, op_list): |
|
super(OpSequential, self).__init__() |
|
valid_op_list = [] |
|
for op in op_list: |
|
if op is not None: |
|
valid_op_list.append(op) |
|
self.op_list = nn.ModuleList(valid_op_list) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for op in self.op_list: |
|
x = op(x) |
|
return x |