from functools import partial import torch import torch.nn as nn import spconv.pytorch as spconv from spconv.core import ConvAlgo def replace_feature(out, new_features): return out.replace_feature(new_features) def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0, conv_type='subm', norm_fn=None): if conv_type == 'subm': conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key, algo=ConvAlgo.Native) elif conv_type == 'spconv': conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=False, indice_key=indice_key, algo=ConvAlgo.Native) elif conv_type == 'inverseconv': conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False, algo=ConvAlgo.Native) else: raise NotImplementedError m = spconv.SparseSequential( conv, norm_fn(out_channels), nn.ReLU(), ) return m class SparseBasicBlock(spconv.SparseModule): expansion = 1 def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None, indice_key=None): super(SparseBasicBlock, self).__init__() assert norm_fn is not None bias = norm_fn is not None self.conv1 = spconv.SubMConv3d( inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key, algo=ConvAlgo.Native ) self.bn1 = norm_fn(planes) self.relu = nn.ReLU() self.conv2 = spconv.SubMConv3d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key, algo=ConvAlgo.Native ) self.bn2 = norm_fn(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = replace_feature(out, self.bn1(out.features)) out = replace_feature(out, self.relu(out.features)) out = self.conv2(out) out = replace_feature(out, self.bn2(out.features)) if self.downsample is not None: identity = self.downsample(x) out = replace_feature(out, out.features + identity.features) out = replace_feature(out, self.relu(out.features)) return out class VoxelResBackBone8xVoxelNeXt(nn.Module): def __init__(self, input_channels, grid_size, **kwargs): super().__init__() norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01) spconv_kernel_sizes = [3, 3, 3, 3] channels = [16, 32, 64, 128, 128] out_channel = 128 self.sparse_shape = grid_size[::-1] + [1, 0, 0] self.conv_input = spconv.SparseSequential( spconv.SubMConv3d(input_channels, channels[0], 3, padding=1, bias=False, indice_key='subm1', algo=ConvAlgo.Native), norm_fn(channels[0]), nn.ReLU(), ) block = post_act_block self.conv1 = spconv.SparseSequential( SparseBasicBlock(channels[0], channels[0], norm_fn=norm_fn, indice_key='res1'), SparseBasicBlock(channels[0], channels[0], norm_fn=norm_fn, indice_key='res1'), ) self.conv2 = spconv.SparseSequential( # [1600, 1408, 41] <- [800, 704, 21] block(channels[0], channels[1], spconv_kernel_sizes[0], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[0]//2), indice_key='spconv2', conv_type='spconv'), SparseBasicBlock(channels[1], channels[1], norm_fn=norm_fn, indice_key='res2'), SparseBasicBlock(channels[1], channels[1], norm_fn=norm_fn, indice_key='res2'), ) self.conv3 = spconv.SparseSequential( # [800, 704, 21] <- [400, 352, 11] block(channels[1], channels[2], spconv_kernel_sizes[1], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[1]//2), indice_key='spconv3', conv_type='spconv'), SparseBasicBlock(channels[2], channels[2], norm_fn=norm_fn, indice_key='res3'), SparseBasicBlock(channels[2], channels[2], norm_fn=norm_fn, indice_key='res3'), ) self.conv4 = spconv.SparseSequential( # [400, 352, 11] <- [200, 176, 6] block(channels[2], channels[3], spconv_kernel_sizes[2], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[2]//2), indice_key='spconv4', conv_type='spconv'), SparseBasicBlock(channels[3], channels[3], norm_fn=norm_fn, indice_key='res4'), SparseBasicBlock(channels[3], channels[3], norm_fn=norm_fn, indice_key='res4'), ) self.conv5 = spconv.SparseSequential( # [200, 176, 6] <- [100, 88, 3] block(channels[3], channels[4], spconv_kernel_sizes[3], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[3]//2), indice_key='spconv5', conv_type='spconv'), SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res5'), SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res5'), ) self.conv6 = spconv.SparseSequential( # [200, 176, 6] <- [100, 88, 3] block(channels[4], channels[4], spconv_kernel_sizes[3], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[3]//2), indice_key='spconv6', conv_type='spconv'), SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res6'), SparseBasicBlock(channels[4], channels[4], norm_fn=norm_fn, indice_key='res6'), ) self.conv_out = spconv.SparseSequential( # [200, 150, 5] -> [200, 150, 2] spconv.SparseConv2d(channels[3], out_channel, 3, stride=1, padding=1, bias=False, indice_key='spconv_down2', algo=ConvAlgo.Native), norm_fn(out_channel), nn.ReLU(), ) self.shared_conv = spconv.SparseSequential( spconv.SubMConv2d(out_channel, out_channel, 3, stride=1, padding=1, bias=True, algo=ConvAlgo.Native), nn.BatchNorm1d(out_channel), nn.ReLU(True), ) self.forward_ret_dict = {} self.num_point_features = out_channel self.backbone_channels = { 'x_conv1': channels[0], 'x_conv2': channels[1], 'x_conv3': channels[2], 'x_conv4': channels[3] } def bev_out(self, x_conv, index): features_cat = x_conv.features indices_cat = x_conv.indices[:, [0, 2, 3]] spatial_shape = x_conv.spatial_shape[1:] indices_unique, _inv = torch.unique(indices_cat, dim=0, return_inverse=True) features_unique = features_cat.new_zeros((indices_unique.shape[0], features_cat.shape[1])) features_unique.index_add_(0, _inv, features_cat) perm = torch.arange(_inv.size(0), dtype=_inv.dtype, device=_inv.device) perm = _inv.new_empty(indices_unique.size(0)).scatter_(0, _inv, perm) index_out = index[perm] x_out = spconv.SparseConvTensor( features=features_unique, indices=indices_unique, spatial_shape=spatial_shape, batch_size=x_conv.batch_size ) return x_out, index_out def track_voxels_2d(self, x, x_downsample, index, kernel_size=3): _step = int(kernel_size//2) kernel_offsets = [[i, j] for i in range(-_step, _step+1) for j in range(-_step, _step+1)] #kernel_offsets.remove([0, 0]) kernel_offsets = torch.Tensor(kernel_offsets).to(x.indices.device) batch_size = x.batch_size index_batch = [] indices_batch = [] for b in range(batch_size): batch_index = x.indices[:, 0]==b indices_ori = x.indices[batch_index] features_ori = index[batch_index] features_fore = features_ori coords_fore = indices_ori voxel_kerels_imp = kernel_offsets.unsqueeze(0).repeat(features_fore.shape[0],1, 1) indices_fore_kernels = coords_fore[:, 1:].unsqueeze(1).repeat(1, kernel_offsets.shape[0], 1) indices_with_imp = indices_fore_kernels + voxel_kerels_imp features_fore = features_fore.repeat(1, kernel_offsets.shape[0]) selected_indices = indices_with_imp spatial_indices = (selected_indices[:, :, 0] >=0) * (selected_indices[:, :, 1] >=0) * \ (selected_indices[:, :, 0] < x.spatial_shape[0]) * (selected_indices[:, :, 1] < x.spatial_shape[1]) selected_indices = selected_indices[spatial_indices] features_fore = features_fore[spatial_indices].view(-1, 1) selected_indices = torch.cat([torch.ones((selected_indices.shape[0], 1), device=features_fore.device)*b, selected_indices], dim=1) features_fore, coords_fore = features_fore, selected_indices index_batch.append(features_fore) indices_batch.append(coords_fore) index_batch = torch.cat(index_batch) indices_batch = torch.cat(indices_batch) return self.index_from_sparse(index_batch, indices_batch, x_downsample, True) def index_from_sparse(self, feature, indices, x_target, _2d=False): sparse_index = spconv.SparseConvTensor( features=feature, indices=indices.int(), spatial_shape=x_target.spatial_shape, batch_size=x_target.batch_size ) dense_index = sparse_index.dense() indices_downsample = x_target.indices.long() if _2d: index_downsample = dense_index[indices_downsample[:, 0], :, indices_downsample[:, 1], indices_downsample[:, 2]] else: index_downsample = dense_index[indices_downsample[:, 0], :, indices_downsample[:, 1], indices_downsample[:, 2], indices_downsample[:, 3]] return index_downsample def forward(self, batch_dict): """ Args: batch_dict: batch_size: int vfe_features: (num_voxels, C) voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx] Returns: batch_dict: encoded_spconv_tensor: sparse tensor """ voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords'] batch_size = batch_dict['batch_size'] input_sp_tensor = spconv.SparseConvTensor( features=voxel_features, indices=voxel_coords.int(), spatial_shape=self.sparse_shape, batch_size=batch_size ) x = self.conv_input(input_sp_tensor) x_conv1 = self.conv1(x) x_conv2 = self.conv2(x_conv1) x_conv3 = self.conv3(x_conv2) x_conv4 = self.conv4(x_conv3) x_conv5 = self.conv5(x_conv4) x_conv6 = self.conv6(x_conv5) x_conv5.indices[:, 1:] *= 2 x_conv6.indices[:, 1:] *= 4 x_conv4 = x_conv4.replace_feature(torch.cat([x_conv4.features, x_conv5.features, x_conv6.features])) x_conv4.indices = torch.cat([x_conv4.indices, x_conv5.indices, x_conv6.indices]) index6_out = torch.arange(x_conv4.indices.shape[0], device=x_conv4.indices.device).unsqueeze(-1) out_bevout, index_bevout = self.bev_out(x_conv4, index6_out) out = self.conv_out(out_bevout) index_out = self.track_voxels_2d(out_bevout, out, index_bevout) out = self.shared_conv(out) batch_dict.update({ 'encoded_spconv_tensor': out, 'encoded_spconv_tensor_stride': 8, 'out_voxels': x_conv4.indices[index_out.squeeze(-1)], }) batch_dict.update({ 'multi_scale_3d_features': { 'x_conv1': x_conv1, 'x_conv2': x_conv2, 'x_conv3': x_conv3, 'x_conv4': x_conv4, } }) batch_dict.update({ 'multi_scale_3d_strides': { 'x_conv1': 1, 'x_conv2': 2, 'x_conv3': 4, 'x_conv4': 8, } }) return batch_dict