File size: 5,316 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import importlib.util
import os
import platform
from argparse import ArgumentParser

import huggingface_hub

from .. import __version__ as version
from ..utils import (
    is_accelerate_available,
    is_flax_available,
    is_safetensors_available,
    is_tf_available,
    is_torch_available,
)
from . import BaseTransformersCLICommand


def info_command_factory(_):
    return EnvironmentCommand()


def download_command_factory(args):
    return EnvironmentCommand(args.accelerate_config_file)


class EnvironmentCommand(BaseTransformersCLICommand):
    @staticmethod
    def register_subcommand(parser: ArgumentParser):
        download_parser = parser.add_parser("env")
        download_parser.set_defaults(func=info_command_factory)
        download_parser.add_argument(
            "--accelerate-config_file",
            default=None,
            help="The accelerate config file to use for the default values in the launching script.",
        )
        download_parser.set_defaults(func=download_command_factory)

    def __init__(self, accelerate_config_file, *args) -> None:
        self._accelerate_config_file = accelerate_config_file

    def run(self):
        safetensors_version = "not installed"
        if is_safetensors_available():
            import safetensors

            safetensors_version = safetensors.__version__
        elif importlib.util.find_spec("safetensors") is not None:
            import safetensors

            safetensors_version = f"{safetensors.__version__} but is ignored because of PyTorch version too old."

        accelerate_version = "not installed"
        accelerate_config = accelerate_config_str = "not found"
        if is_accelerate_available():
            import accelerate
            from accelerate.commands.config import default_config_file, load_config_from_file

            accelerate_version = accelerate.__version__
            # Get the default from the config file.
            if self._accelerate_config_file is not None or os.path.isfile(default_config_file):
                accelerate_config = load_config_from_file(self._accelerate_config_file).to_dict()

            accelerate_config_str = (
                "\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()])
                if isinstance(accelerate_config, dict)
                else f"\t{accelerate_config}"
            )

        pt_version = "not installed"
        pt_cuda_available = "NA"
        if is_torch_available():
            import torch

            pt_version = torch.__version__
            pt_cuda_available = torch.cuda.is_available()

        tf_version = "not installed"
        tf_cuda_available = "NA"
        if is_tf_available():
            import tensorflow as tf

            tf_version = tf.__version__
            try:
                # deprecated in v2.1
                tf_cuda_available = tf.test.is_gpu_available()
            except AttributeError:
                # returns list of devices, convert to bool
                tf_cuda_available = bool(tf.config.list_physical_devices("GPU"))

        flax_version = "not installed"
        jax_version = "not installed"
        jaxlib_version = "not installed"
        jax_backend = "NA"
        if is_flax_available():
            import flax
            import jax
            import jaxlib

            flax_version = flax.__version__
            jax_version = jax.__version__
            jaxlib_version = jaxlib.__version__
            jax_backend = jax.lib.xla_bridge.get_backend().platform

        info = {
            "`transformers` version": version,
            "Platform": platform.platform(),
            "Python version": platform.python_version(),
            "Huggingface_hub version": huggingface_hub.__version__,
            "Safetensors version": f"{safetensors_version}",
            "Accelerate version": f"{accelerate_version}",
            "Accelerate config": f"{accelerate_config_str}",
            "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
            "Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
            "Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
            "Jax version": f"{jax_version}",
            "JaxLib version": f"{jaxlib_version}",
            "Using GPU in script?": "<fill in>",
            "Using distributed or parallel set-up in script?": "<fill in>",
        }

        print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
        print(self.format_dict(info))

        return info

    @staticmethod
    def format_dict(d):
        return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"