File size: 24,342 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Beit."""

import warnings
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np

from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
    IMAGENET_STANDARD_MEAN,
    IMAGENET_STANDARD_STD,
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    infer_channel_dimension_format,
    is_scaled_image,
    make_list_of_images,
    to_numpy_array,
    valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging


if is_vision_available():
    import PIL

if is_torch_available():
    import torch


logger = logging.get_logger(__name__)


class BeitImageProcessor(BaseImageProcessor):
    r"""
    Constructs a BEiT image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
            method.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
            `preprocess` method.
        do_center_crop (`bool`, *optional*, defaults to `True`):
            Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
            is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
            `preprocess` method.
        crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
            Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
            Can be overridden by the `crop_size` parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
            parameter in the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            The mean to use if normalizing the image. This is a float or list of floats of length of the number of
            channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
            number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_reduce_labels (`bool`, *optional*, defaults to `False`):
            Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
            used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
            background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
            `preprocess` method.
    """

    model_input_names = ["pixel_values"]

    def __init__(
        self,
        do_resize: bool = True,
        size: Dict[str, int] = None,
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        do_center_crop: bool = True,
        crop_size: Dict[str, int] = None,
        rescale_factor: Union[int, float] = 1 / 255,
        do_rescale: bool = True,
        do_normalize: bool = True,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_reduce_labels: bool = False,
        **kwargs,
    ) -> None:
        if "reduce_labels" in kwargs:
            warnings.warn(
                "The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use"
                " `do_reduce_labels` instead.",
                FutureWarning,
            )
            do_reduce_labels = kwargs.pop("reduce_labels")
        super().__init__(**kwargs)
        size = size if size is not None else {"height": 256, "width": 256}
        size = get_size_dict(size)
        crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
        crop_size = get_size_dict(crop_size, param_name="crop_size")
        self.do_resize = do_resize
        self.size = size
        self.resample = resample
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
        self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
        self.do_reduce_labels = do_reduce_labels

    @classmethod
    def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
        """
        Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor
        is created using from_dict and kwargs e.g. `BeitImageProcessor.from_pretrained(checkpoint, reduce_labels=True)`
        """
        image_processor_dict = image_processor_dict.copy()
        if "reduce_labels" in kwargs:
            image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels")
        return super().from_dict(image_processor_dict, **kwargs)

    def resize(
        self,
        image: np.ndarray,
        size: Dict[str, int],
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        """
        Resize an image to (size["height"], size["width"]).

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Size of the output image.
            resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
                Resampling filter to use when resiizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        """
        size = get_size_dict(size, default_to_square=True, param_name="size")
        if "height" not in size or "width" not in size:
            raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
        return resize(
            image,
            size=(size["height"], size["width"]),
            resample=resample,
            data_format=data_format,
            input_data_format=input_data_format,
            **kwargs,
        )

    def reduce_label(self, label: ImageInput) -> np.ndarray:
        label = to_numpy_array(label)
        # Avoid using underflow conversion
        label[label == 0] = 255
        label = label - 1
        label[label == 254] = 255
        return label

    def _preprocess(
        self,
        image: ImageInput,
        do_reduce_labels: bool = None,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_center_crop: bool = None,
        crop_size: Dict[str, int] = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        if do_reduce_labels:
            image = self.reduce_label(image)

        if do_resize:
            image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)

        if do_center_crop:
            image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)

        if do_rescale:
            image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)

        if do_normalize:
            image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)

        return image

    def _preprocess_image(
        self,
        image: ImageInput,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_center_crop: bool = None,
        crop_size: Dict[str, int] = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        """Preprocesses a single image."""
        # All transformations expect numpy arrays.
        image = to_numpy_array(image)
        if is_scaled_image(image) and do_rescale:
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )
        if input_data_format is None:
            input_data_format = infer_channel_dimension_format(image)
        image = self._preprocess(
            image,
            do_reduce_labels=False,
            do_resize=do_resize,
            size=size,
            resample=resample,
            do_center_crop=do_center_crop,
            crop_size=crop_size,
            do_rescale=do_rescale,
            rescale_factor=rescale_factor,
            do_normalize=do_normalize,
            image_mean=image_mean,
            image_std=image_std,
            input_data_format=input_data_format,
        )
        if data_format is not None:
            image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
        return image

    def _preprocess_segmentation_map(
        self,
        segmentation_map: ImageInput,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_center_crop: bool = None,
        crop_size: Dict[str, int] = None,
        do_reduce_labels: bool = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """Preprocesses a single segmentation map."""
        # All transformations expect numpy arrays.
        segmentation_map = to_numpy_array(segmentation_map)
        # Add an axis to the segmentation maps for transformations.
        if segmentation_map.ndim == 2:
            segmentation_map = segmentation_map[None, ...]
            added_dimension = True
            input_data_format = ChannelDimension.FIRST
        else:
            added_dimension = False
            if input_data_format is None:
                input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
        segmentation_map = self._preprocess(
            image=segmentation_map,
            do_reduce_labels=do_reduce_labels,
            do_resize=do_resize,
            resample=resample,
            size=size,
            do_center_crop=do_center_crop,
            crop_size=crop_size,
            do_normalize=False,
            do_rescale=False,
            input_data_format=ChannelDimension.FIRST,
        )
        # Remove extra axis if added
        if added_dimension:
            segmentation_map = np.squeeze(segmentation_map, axis=0)
        segmentation_map = segmentation_map.astype(np.int64)
        return segmentation_map

    def __call__(self, images, segmentation_maps=None, **kwargs):
        # Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
        # be passed in as positional arguments.
        return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)

    def preprocess(
        self,
        images: ImageInput,
        segmentation_maps: Optional[ImageInput] = None,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_center_crop: bool = None,
        crop_size: Dict[str, int] = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_reduce_labels: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: ChannelDimension = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> PIL.Image.Image:
        """
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
                has an effect if `do_resize` is set to `True`.
            do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
                Whether to center crop the image.
            crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
                Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
                padded with zeros and then cropped
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation.
            do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
                Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
                is used for background, and background itself is not included in all classes of a dataset (e.g.
                ADE20k). The background label will be replaced by 255.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        size = size if size is not None else self.size
        size = get_size_dict(size, default_to_square=True, param_name="size")
        resample = resample if resample is not None else self.resample
        do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
        crop_size = crop_size if crop_size is not None else self.crop_size
        crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels

        images = make_list_of_images(images)
        if segmentation_maps is not None:
            segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        if segmentation_maps is not None and not valid_images(segmentation_maps):
            raise ValueError(
                "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        if do_resize and size is None or resample is None:
            raise ValueError("Size and resample must be specified if do_resize is True.")

        if do_center_crop and crop_size is None:
            raise ValueError("Crop size must be specified if do_center_crop is True.")

        if do_rescale and rescale_factor is None:
            raise ValueError("Rescale factor must be specified if do_rescale is True.")

        if do_normalize and (image_mean is None or image_std is None):
            raise ValueError("Image mean and std must be specified if do_normalize is True.")

        images = [
            self._preprocess_image(
                image=img,
                do_resize=do_resize,
                do_center_crop=do_center_crop,
                do_rescale=do_rescale,
                do_normalize=do_normalize,
                resample=resample,
                size=size,
                rescale_factor=rescale_factor,
                crop_size=crop_size,
                image_mean=image_mean,
                image_std=image_std,
                data_format=data_format,
                input_data_format=input_data_format,
            )
            for img in images
        ]

        data = {"pixel_values": images}

        if segmentation_maps is not None:
            segmentation_maps = [
                self._preprocess_segmentation_map(
                    segmentation_map=segmentation_map,
                    do_reduce_labels=do_reduce_labels,
                    do_resize=do_resize,
                    resample=resample,
                    size=size,
                    do_center_crop=do_center_crop,
                    crop_size=crop_size,
                )
                for segmentation_map in segmentation_maps
            ]
            data["labels"] = segmentation_maps

        return BatchFeature(data=data, tensor_type=return_tensors)

    def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
        """
        Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.

        Args:
            outputs ([`BeitForSemanticSegmentation`]):
                Raw outputs of the model.
            target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
                List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
                predictions will not be resized.

        Returns:
            semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
            segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
            specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
        """
        # TODO: add support for other frameworks
        logits = outputs.logits

        # Resize logits and compute semantic segmentation maps
        if target_sizes is not None:
            if len(logits) != len(target_sizes):
                raise ValueError(
                    "Make sure that you pass in as many target sizes as the batch dimension of the logits"
                )

            if is_torch_tensor(target_sizes):
                target_sizes = target_sizes.numpy()

            semantic_segmentation = []

            for idx in range(len(logits)):
                resized_logits = torch.nn.functional.interpolate(
                    logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
                )
                semantic_map = resized_logits[0].argmax(dim=0)
                semantic_segmentation.append(semantic_map)
        else:
            semantic_segmentation = logits.argmax(dim=1)
            semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]

        return semantic_segmentation