File size: 30,521 Bytes
4c65bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.util
import json
import os
import time
from dataclasses import dataclass
from typing import Dict
import requests
from huggingface_hub import HfFolder, hf_hub_download, list_spaces
from ..models.auto import AutoTokenizer
from ..utils import is_offline_mode, is_openai_available, is_torch_available, logging
from .base import TASK_MAPPING, TOOL_CONFIG_FILE, Tool, load_tool, supports_remote
from .prompts import CHAT_MESSAGE_PROMPT, download_prompt
from .python_interpreter import evaluate
logger = logging.get_logger(__name__)
if is_openai_available():
import openai
if is_torch_available():
from ..generation import StoppingCriteria, StoppingCriteriaList
from ..models.auto import AutoModelForCausalLM
else:
StoppingCriteria = object
_tools_are_initialized = False
BASE_PYTHON_TOOLS = {
"print": print,
"range": range,
"float": float,
"int": int,
"bool": bool,
"str": str,
}
@dataclass
class PreTool:
task: str
description: str
repo_id: str
HUGGINGFACE_DEFAULT_TOOLS = {}
HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB = [
"image-transformation",
"text-download",
"text-to-image",
"text-to-video",
]
def get_remote_tools(organization="huggingface-tools"):
if is_offline_mode():
logger.info("You are in offline mode, so remote tools are not available.")
return {}
spaces = list_spaces(author=organization)
tools = {}
for space_info in spaces:
repo_id = space_info.id
resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space")
with open(resolved_config_file, encoding="utf-8") as reader:
config = json.load(reader)
task = repo_id.split("/")[-1]
tools[config["name"]] = PreTool(task=task, description=config["description"], repo_id=repo_id)
return tools
def _setup_default_tools():
global HUGGINGFACE_DEFAULT_TOOLS
global _tools_are_initialized
if _tools_are_initialized:
return
main_module = importlib.import_module("transformers")
tools_module = main_module.tools
remote_tools = get_remote_tools()
for task_name, tool_class_name in TASK_MAPPING.items():
tool_class = getattr(tools_module, tool_class_name)
description = tool_class.description
HUGGINGFACE_DEFAULT_TOOLS[tool_class.name] = PreTool(task=task_name, description=description, repo_id=None)
if not is_offline_mode():
for task_name in HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB:
found = False
for tool_name, tool in remote_tools.items():
if tool.task == task_name:
HUGGINGFACE_DEFAULT_TOOLS[tool_name] = tool
found = True
break
if not found:
raise ValueError(f"{task_name} is not implemented on the Hub.")
_tools_are_initialized = True
def resolve_tools(code, toolbox, remote=False, cached_tools=None):
if cached_tools is None:
resolved_tools = BASE_PYTHON_TOOLS.copy()
else:
resolved_tools = cached_tools
for name, tool in toolbox.items():
if name not in code or name in resolved_tools:
continue
if isinstance(tool, Tool):
resolved_tools[name] = tool
else:
task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
_remote = remote and supports_remote(task_or_repo_id)
resolved_tools[name] = load_tool(task_or_repo_id, remote=_remote)
return resolved_tools
def get_tool_creation_code(code, toolbox, remote=False):
code_lines = ["from transformers import load_tool", ""]
for name, tool in toolbox.items():
if name not in code or isinstance(tool, Tool):
continue
task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
line = f'{name} = load_tool("{task_or_repo_id}"'
if remote:
line += ", remote=True"
line += ")"
code_lines.append(line)
return "\n".join(code_lines) + "\n"
def clean_code_for_chat(result):
lines = result.split("\n")
idx = 0
while idx < len(lines) and not lines[idx].lstrip().startswith("```"):
idx += 1
explanation = "\n".join(lines[:idx]).strip()
if idx == len(lines):
return explanation, None
idx += 1
start_idx = idx
while not lines[idx].lstrip().startswith("```"):
idx += 1
code = "\n".join(lines[start_idx:idx]).strip()
return explanation, code
def clean_code_for_run(result):
result = f"I will use the following {result}"
explanation, code = result.split("Answer:")
explanation = explanation.strip()
code = code.strip()
code_lines = code.split("\n")
if code_lines[0] in ["```", "```py", "```python"]:
code_lines = code_lines[1:]
if code_lines[-1] == "```":
code_lines = code_lines[:-1]
code = "\n".join(code_lines)
return explanation, code
class Agent:
"""
Base class for all agents which contains the main API methods.
Args:
chat_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`chat_prompt_template.txt` in this repo in this case.
run_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`run_prompt_template.txt` in this repo in this case.
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
one of the default tools, that default tool will be overridden.
"""
def __init__(self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None):
_setup_default_tools()
agent_name = self.__class__.__name__
self.chat_prompt_template = download_prompt(chat_prompt_template, agent_name, mode="chat")
self.run_prompt_template = download_prompt(run_prompt_template, agent_name, mode="run")
self._toolbox = HUGGINGFACE_DEFAULT_TOOLS.copy()
self.log = print
if additional_tools is not None:
if isinstance(additional_tools, (list, tuple)):
additional_tools = {t.name: t for t in additional_tools}
elif not isinstance(additional_tools, dict):
additional_tools = {additional_tools.name: additional_tools}
replacements = {name: tool for name, tool in additional_tools.items() if name in HUGGINGFACE_DEFAULT_TOOLS}
self._toolbox.update(additional_tools)
if len(replacements) > 1:
names = "\n".join([f"- {n}: {t}" for n, t in replacements.items()])
logger.warning(
f"The following tools have been replaced by the ones provided in `additional_tools`:\n{names}."
)
elif len(replacements) == 1:
name = list(replacements.keys())[0]
logger.warning(f"{name} has been replaced by {replacements[name]} as provided in `additional_tools`.")
self.prepare_for_new_chat()
@property
def toolbox(self) -> Dict[str, Tool]:
"""Get all tool currently available to the agent"""
return self._toolbox
def format_prompt(self, task, chat_mode=False):
description = "\n".join([f"- {name}: {tool.description}" for name, tool in self.toolbox.items()])
if chat_mode:
if self.chat_history is None:
prompt = self.chat_prompt_template.replace("<<all_tools>>", description)
else:
prompt = self.chat_history
prompt += CHAT_MESSAGE_PROMPT.replace("<<task>>", task)
else:
prompt = self.run_prompt_template.replace("<<all_tools>>", description)
prompt = prompt.replace("<<prompt>>", task)
return prompt
def set_stream(self, streamer):
"""
Set the function use to stream results (which is `print` by default).
Args:
streamer (`callable`): The function to call when streaming results from the LLM.
"""
self.log = streamer
def chat(self, task, *, return_code=False, remote=False, **kwargs):
"""
Sends a new request to the agent in a chat. Will use the previous ones in its history.
Args:
task (`str`): The task to perform
return_code (`bool`, *optional*, defaults to `False`):
Whether to just return code and not evaluate it.
remote (`bool`, *optional*, defaults to `False`):
Whether or not to use remote tools (inference endpoints) instead of local ones.
kwargs (additional keyword arguments, *optional*):
Any keyword argument to send to the agent when evaluating the code.
Example:
```py
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
agent.chat("Draw me a picture of rivers and lakes")
agent.chat("Transform the picture so that there is a rock in there")
```
"""
prompt = self.format_prompt(task, chat_mode=True)
result = self.generate_one(prompt, stop=["Human:", "====="])
self.chat_history = prompt + result.strip() + "\n"
explanation, code = clean_code_for_chat(result)
self.log(f"==Explanation from the agent==\n{explanation}")
if code is not None:
self.log(f"\n\n==Code generated by the agent==\n{code}")
if not return_code:
self.log("\n\n==Result==")
self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools)
self.chat_state.update(kwargs)
return evaluate(code, self.cached_tools, self.chat_state, chat_mode=True)
else:
tool_code = get_tool_creation_code(code, self.toolbox, remote=remote)
return f"{tool_code}\n{code}"
def prepare_for_new_chat(self):
"""
Clears the history of prior calls to [`~Agent.chat`].
"""
self.chat_history = None
self.chat_state = {}
self.cached_tools = None
def run(self, task, *, return_code=False, remote=False, **kwargs):
"""
Sends a request to the agent.
Args:
task (`str`): The task to perform
return_code (`bool`, *optional*, defaults to `False`):
Whether to just return code and not evaluate it.
remote (`bool`, *optional*, defaults to `False`):
Whether or not to use remote tools (inference endpoints) instead of local ones.
kwargs (additional keyword arguments, *optional*):
Any keyword argument to send to the agent when evaluating the code.
Example:
```py
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
agent.run("Draw me a picture of rivers and lakes")
```
"""
prompt = self.format_prompt(task)
result = self.generate_one(prompt, stop=["Task:"])
explanation, code = clean_code_for_run(result)
self.log(f"==Explanation from the agent==\n{explanation}")
self.log(f"\n\n==Code generated by the agent==\n{code}")
if not return_code:
self.log("\n\n==Result==")
self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools)
return evaluate(code, self.cached_tools, state=kwargs.copy())
else:
tool_code = get_tool_creation_code(code, self.toolbox, remote=remote)
return f"{tool_code}\n{code}"
def generate_one(self, prompt, stop):
# This is the method to implement in your custom agent.
raise NotImplementedError
def generate_many(self, prompts, stop):
# Override if you have a way to do batch generation faster than one by one
return [self.generate_one(prompt, stop) for prompt in prompts]
class OpenAiAgent(Agent):
"""
Agent that uses the openai API to generate code.
<Tip warning={true}>
The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like
`"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version.
</Tip>
Args:
model (`str`, *optional*, defaults to `"text-davinci-003"`):
The name of the OpenAI model to use.
api_key (`str`, *optional*):
The API key to use. If unset, will look for the environment variable `"OPENAI_API_KEY"`.
chat_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`chat_prompt_template.txt` in this repo in this case.
run_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`run_prompt_template.txt` in this repo in this case.
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
one of the default tools, that default tool will be overridden.
Example:
```py
from transformers import OpenAiAgent
agent = OpenAiAgent(model="text-davinci-003", api_key=xxx)
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
```
"""
def __init__(
self,
model="text-davinci-003",
api_key=None,
chat_prompt_template=None,
run_prompt_template=None,
additional_tools=None,
):
if not is_openai_available():
raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.")
if api_key is None:
api_key = os.environ.get("OPENAI_API_KEY", None)
if api_key is None:
raise ValueError(
"You need an openai key to use `OpenAIAgent`. You can get one here: Get one here "
"https://openai.com/api/`. If you have one, set it in your env with `os.environ['OPENAI_API_KEY'] = "
"xxx."
)
else:
openai.api_key = api_key
self.model = model
super().__init__(
chat_prompt_template=chat_prompt_template,
run_prompt_template=run_prompt_template,
additional_tools=additional_tools,
)
def generate_many(self, prompts, stop):
if "gpt" in self.model:
return [self._chat_generate(prompt, stop) for prompt in prompts]
else:
return self._completion_generate(prompts, stop)
def generate_one(self, prompt, stop):
if "gpt" in self.model:
return self._chat_generate(prompt, stop)
else:
return self._completion_generate([prompt], stop)[0]
def _chat_generate(self, prompt, stop):
result = openai.ChatCompletion.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
stop=stop,
)
return result["choices"][0]["message"]["content"]
def _completion_generate(self, prompts, stop):
result = openai.Completion.create(
model=self.model,
prompt=prompts,
temperature=0,
stop=stop,
max_tokens=200,
)
return [answer["text"] for answer in result["choices"]]
class AzureOpenAiAgent(Agent):
"""
Agent that uses Azure OpenAI to generate code. See the [official
documentation](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) to learn how to deploy an openAI
model on Azure
<Tip warning={true}>
The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like
`"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version.
</Tip>
Args:
deployment_id (`str`):
The name of the deployed Azure openAI model to use.
api_key (`str`, *optional*):
The API key to use. If unset, will look for the environment variable `"AZURE_OPENAI_API_KEY"`.
resource_name (`str`, *optional*):
The name of your Azure OpenAI Resource. If unset, will look for the environment variable
`"AZURE_OPENAI_RESOURCE_NAME"`.
api_version (`str`, *optional*, default to `"2022-12-01"`):
The API version to use for this agent.
is_chat_mode (`bool`, *optional*):
Whether you are using a completion model or a chat model (see note above, chat models won't be as
efficient). Will default to `gpt` being in the `deployment_id` or not.
chat_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`chat_prompt_template.txt` in this repo in this case.
run_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`run_prompt_template.txt` in this repo in this case.
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
one of the default tools, that default tool will be overridden.
Example:
```py
from transformers import AzureOpenAiAgent
agent = AzureAiAgent(deployment_id="Davinci-003", api_key=xxx, resource_name=yyy)
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
```
"""
def __init__(
self,
deployment_id,
api_key=None,
resource_name=None,
api_version="2022-12-01",
is_chat_model=None,
chat_prompt_template=None,
run_prompt_template=None,
additional_tools=None,
):
if not is_openai_available():
raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.")
self.deployment_id = deployment_id
openai.api_type = "azure"
if api_key is None:
api_key = os.environ.get("AZURE_OPENAI_API_KEY", None)
if api_key is None:
raise ValueError(
"You need an Azure openAI key to use `AzureOpenAIAgent`. If you have one, set it in your env with "
"`os.environ['AZURE_OPENAI_API_KEY'] = xxx."
)
else:
openai.api_key = api_key
if resource_name is None:
resource_name = os.environ.get("AZURE_OPENAI_RESOURCE_NAME", None)
if resource_name is None:
raise ValueError(
"You need a resource_name to use `AzureOpenAIAgent`. If you have one, set it in your env with "
"`os.environ['AZURE_OPENAI_RESOURCE_NAME'] = xxx."
)
else:
openai.api_base = f"https://{resource_name}.openai.azure.com"
openai.api_version = api_version
if is_chat_model is None:
is_chat_model = "gpt" in deployment_id.lower()
self.is_chat_model = is_chat_model
super().__init__(
chat_prompt_template=chat_prompt_template,
run_prompt_template=run_prompt_template,
additional_tools=additional_tools,
)
def generate_many(self, prompts, stop):
if self.is_chat_model:
return [self._chat_generate(prompt, stop) for prompt in prompts]
else:
return self._completion_generate(prompts, stop)
def generate_one(self, prompt, stop):
if self.is_chat_model:
return self._chat_generate(prompt, stop)
else:
return self._completion_generate([prompt], stop)[0]
def _chat_generate(self, prompt, stop):
result = openai.ChatCompletion.create(
engine=self.deployment_id,
messages=[{"role": "user", "content": prompt}],
temperature=0,
stop=stop,
)
return result["choices"][0]["message"]["content"]
def _completion_generate(self, prompts, stop):
result = openai.Completion.create(
engine=self.deployment_id,
prompt=prompts,
temperature=0,
stop=stop,
max_tokens=200,
)
return [answer["text"] for answer in result["choices"]]
class HfAgent(Agent):
"""
Agent that uses an inference endpoint to generate code.
Args:
url_endpoint (`str`):
The name of the url endpoint to use.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
running `huggingface-cli login` (stored in `~/.huggingface`).
chat_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`chat_prompt_template.txt` in this repo in this case.
run_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`run_prompt_template.txt` in this repo in this case.
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
one of the default tools, that default tool will be overridden.
Example:
```py
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
```
"""
def __init__(
self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None
):
self.url_endpoint = url_endpoint
if token is None:
self.token = f"Bearer {HfFolder().get_token()}"
elif token.startswith("Bearer") or token.startswith("Basic"):
self.token = token
else:
self.token = f"Bearer {token}"
super().__init__(
chat_prompt_template=chat_prompt_template,
run_prompt_template=run_prompt_template,
additional_tools=additional_tools,
)
def generate_one(self, prompt, stop):
headers = {"Authorization": self.token}
inputs = {
"inputs": prompt,
"parameters": {"max_new_tokens": 200, "return_full_text": False, "stop": stop},
}
response = requests.post(self.url_endpoint, json=inputs, headers=headers)
if response.status_code == 429:
logger.info("Getting rate-limited, waiting a tiny bit before trying again.")
time.sleep(1)
return self._generate_one(prompt)
elif response.status_code != 200:
raise ValueError(f"Error {response.status_code}: {response.json()}")
result = response.json()[0]["generated_text"]
# Inference API returns the stop sequence
for stop_seq in stop:
if result.endswith(stop_seq):
return result[: -len(stop_seq)]
return result
class LocalAgent(Agent):
"""
Agent that uses a local model and tokenizer to generate code.
Args:
model ([`PreTrainedModel`]):
The model to use for the agent.
tokenizer ([`PreTrainedTokenizer`]):
The tokenizer to use for the agent.
chat_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`chat_prompt_template.txt` in this repo in this case.
run_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`run_prompt_template.txt` in this repo in this case.
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
one of the default tools, that default tool will be overridden.
Example:
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent
checkpoint = "bigcode/starcoder"
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
agent = LocalAgent(model, tokenizer)
agent.run("Draw me a picture of rivers and lakes.")
```
"""
def __init__(self, model, tokenizer, chat_prompt_template=None, run_prompt_template=None, additional_tools=None):
self.model = model
self.tokenizer = tokenizer
super().__init__(
chat_prompt_template=chat_prompt_template,
run_prompt_template=run_prompt_template,
additional_tools=additional_tools,
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""
Convenience method to build a `LocalAgent` from a pretrained checkpoint.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
The name of a repo on the Hub or a local path to a folder containing both model and tokenizer.
kwargs (`Dict[str, Any]`, *optional*):
Keyword arguments passed along to [`~PreTrainedModel.from_pretrained`].
Example:
```py
import torch
from transformers import LocalAgent
agent = LocalAgent.from_pretrained("bigcode/starcoder", device_map="auto", torch_dtype=torch.bfloat16)
agent.run("Draw me a picture of rivers and lakes.")
```
"""
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **kwargs)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(model, tokenizer)
@property
def _model_device(self):
if hasattr(self.model, "hf_device_map"):
return list(self.model.hf_device_map.values())[0]
for param in self.model.parameters():
return param.device
def generate_one(self, prompt, stop):
encoded_inputs = self.tokenizer(prompt, return_tensors="pt").to(self._model_device)
src_len = encoded_inputs["input_ids"].shape[1]
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(stop, self.tokenizer)])
outputs = self.model.generate(
encoded_inputs["input_ids"], max_new_tokens=200, stopping_criteria=stopping_criteria
)
result = self.tokenizer.decode(outputs[0].tolist()[src_len:])
# Inference API returns the stop sequence
for stop_seq in stop:
if result.endswith(stop_seq):
result = result[: -len(stop_seq)]
return result
class StopSequenceCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever a sequence of tokens is encountered.
Args:
stop_sequences (`str` or `List[str]`):
The sequence (or list of sequences) on which to stop execution.
tokenizer:
The tokenizer used to decode the model outputs.
"""
def __init__(self, stop_sequences, tokenizer):
if isinstance(stop_sequences, str):
stop_sequences = [stop_sequences]
self.stop_sequences = stop_sequences
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs) -> bool:
decoded_output = self.tokenizer.decode(input_ids.tolist()[0])
return any(decoded_output.endswith(stop_sequence) for stop_sequence in self.stop_sequences)
|