File size: 9,432 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# coding=utf-8
# Copyright Meta Platforms and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Data2VecVision model configuration"""
from collections import OrderedDict
from typing import Mapping

from packaging import version

from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging


logger = logging.get_logger(__name__)

DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "facebook/data2vec-vision-base-ft": (
        "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
    ),
}


class Data2VecVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Data2VecVisionModel`]. It is used to instantiate
    an Data2VecVision model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Data2VecVision
    [facebook/data2vec-vision-base](https://huggingface.co/facebook/data2vec-vision-base) architecture.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        use_mask_token (`bool`, *optional*, defaults to `False`):
            Whether to use a mask token for masked image modeling.
        use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to use BERT-style absolute position embeddings.
        use_relative_position_bias (`bool`, *optional*, defaults to `False`):
            Whether to use T5-style relative position embeddings in the self-attention layers.
        use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
            Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
        layer_scale_init_value (`float`, *optional*, defaults to 0.1):
            Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate per sample (when applied in the main path of residual layers).
        use_mean_pooling (`bool`, *optional*, defaults to `True`):
            Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
            CLS token, before applying the classification head.
        out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
            Indices of the feature maps to use for semantic segmentation.
        pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
            Pooling scales used in Pooling Pyramid Module applied on the last feature map.
        use_auxiliary_head (`bool`, *optional*, defaults to `True`):
            Whether to use an auxiliary head during training.
        auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
            Weight of the cross-entropy loss of the auxiliary head.
        auxiliary_channels (`int`, *optional*, defaults to 256):
            Number of channels to use in the auxiliary head.
        auxiliary_num_convs (`int`, *optional*, defaults to 1):
            Number of convolutional layers to use in the auxiliary head.
        auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
            Whether to concatenate the output of the auxiliary head with the input before the classification layer.
        semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function of the semantic segmentation model.

    Example:

    ```python
    >>> from transformers import Data2VecVisionConfig, Data2VecVisionModel

    >>> # Initializing a Data2VecVision data2vec_vision-base-patch16-224-in22k style configuration
    >>> configuration = Data2VecVisionConfig()

    >>> # Initializing a model (with random weights) from the data2vec_vision-base-patch16-224-in22k style configuration
    >>> model = Data2VecVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "data2vec-vision"

    def __init__(
        self,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        image_size=224,
        patch_size=16,
        num_channels=3,
        use_mask_token=False,
        use_absolute_position_embeddings=False,
        use_relative_position_bias=False,
        use_shared_relative_position_bias=False,
        layer_scale_init_value=0.1,
        drop_path_rate=0.1,
        use_mean_pooling=True,
        out_indices=[3, 5, 7, 11],
        pool_scales=[1, 2, 3, 6],
        use_auxiliary_head=True,
        auxiliary_loss_weight=0.4,
        auxiliary_channels=256,
        auxiliary_num_convs=1,
        auxiliary_concat_input=False,
        semantic_loss_ignore_index=255,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.use_mask_token = use_mask_token
        self.use_absolute_position_embeddings = use_absolute_position_embeddings
        self.use_relative_position_bias = use_relative_position_bias
        self.use_shared_relative_position_bias = use_shared_relative_position_bias
        self.layer_scale_init_value = layer_scale_init_value
        self.drop_path_rate = drop_path_rate
        self.use_mean_pooling = use_mean_pooling
        # decode head attributes (semantic segmentation)
        self.out_indices = out_indices
        self.pool_scales = pool_scales
        # auxiliary head attributes (semantic segmentation)
        self.use_auxiliary_head = use_auxiliary_head
        self.auxiliary_loss_weight = auxiliary_loss_weight
        self.auxiliary_channels = auxiliary_channels
        self.auxiliary_num_convs = auxiliary_num_convs
        self.auxiliary_concat_input = auxiliary_concat_input
        self.semantic_loss_ignore_index = semantic_loss_ignore_index


# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
class Data2VecVisionOnnxConfig(OnnxConfig):
    torch_onnx_minimum_version = version.parse("1.11")

    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        return OrderedDict(
            [
                ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
            ]
        )

    @property
    def atol_for_validation(self) -> float:
        return 1e-4