|
import math |
|
import numpy as np |
|
import matplotlib |
|
import cv2 |
|
|
|
|
|
eps = 0.01 |
|
|
|
|
|
def smart_resize(x, s): |
|
Ht, Wt = s |
|
if x.ndim == 2: |
|
Ho, Wo = x.shape |
|
Co = 1 |
|
else: |
|
Ho, Wo, Co = x.shape |
|
if Co == 3 or Co == 1: |
|
k = float(Ht + Wt) / float(Ho + Wo) |
|
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) |
|
else: |
|
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2) |
|
|
|
|
|
def smart_resize_k(x, fx, fy): |
|
if x.ndim == 2: |
|
Ho, Wo = x.shape |
|
Co = 1 |
|
else: |
|
Ho, Wo, Co = x.shape |
|
Ht, Wt = Ho * fy, Wo * fx |
|
if Co == 3 or Co == 1: |
|
k = float(Ht + Wt) / float(Ho + Wo) |
|
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) |
|
else: |
|
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2) |
|
|
|
|
|
def padRightDownCorner(img, stride, padValue): |
|
h = img.shape[0] |
|
w = img.shape[1] |
|
|
|
pad = 4 * [None] |
|
pad[0] = 0 |
|
pad[1] = 0 |
|
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) |
|
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) |
|
|
|
img_padded = img |
|
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) |
|
img_padded = np.concatenate((pad_up, img_padded), axis=0) |
|
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) |
|
img_padded = np.concatenate((pad_left, img_padded), axis=1) |
|
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) |
|
img_padded = np.concatenate((img_padded, pad_down), axis=0) |
|
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) |
|
img_padded = np.concatenate((img_padded, pad_right), axis=1) |
|
|
|
return img_padded, pad |
|
|
|
|
|
def transfer(model, model_weights): |
|
transfered_model_weights = {} |
|
for weights_name in model.state_dict().keys(): |
|
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] |
|
return transfered_model_weights |
|
|
|
|
|
def draw_bodypose(canvas, candidate, subset): |
|
H, W, C = canvas.shape |
|
candidate = np.array(candidate) |
|
subset = np.array(subset) |
|
|
|
stickwidth = 4 |
|
|
|
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ |
|
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ |
|
[1, 16], [16, 18], [3, 17], [6, 18]] |
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ |
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ |
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] |
|
|
|
for i in range(17): |
|
for n in range(len(subset)): |
|
index = subset[n][np.array(limbSeq[i]) - 1] |
|
if -1 in index: |
|
continue |
|
Y = candidate[index.astype(int), 0] * float(W) |
|
X = candidate[index.astype(int), 1] * float(H) |
|
mX = np.mean(X) |
|
mY = np.mean(Y) |
|
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 |
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) |
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) |
|
cv2.fillConvexPoly(canvas, polygon, colors[i]) |
|
|
|
canvas = (canvas * 0.6).astype(np.uint8) |
|
|
|
for i in range(18): |
|
for n in range(len(subset)): |
|
index = int(subset[n][i]) |
|
if index == -1: |
|
continue |
|
x, y = candidate[index][0:2] |
|
x = int(x * W) |
|
y = int(y * H) |
|
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) |
|
|
|
return canvas |
|
|
|
|
|
def draw_handpose(canvas, all_hand_peaks): |
|
H, W, C = canvas.shape |
|
|
|
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ |
|
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] |
|
|
|
for peaks in all_hand_peaks: |
|
peaks = np.array(peaks) |
|
|
|
for ie, e in enumerate(edges): |
|
x1, y1 = peaks[e[0]] |
|
x2, y2 = peaks[e[1]] |
|
x1 = int(x1 * W) |
|
y1 = int(y1 * H) |
|
x2 = int(x2 * W) |
|
y2 = int(y2 * H) |
|
if x1 > eps and y1 > eps and x2 > eps and y2 > eps: |
|
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2) |
|
|
|
for i, keyponit in enumerate(peaks): |
|
x, y = keyponit |
|
x = int(x * W) |
|
y = int(y * H) |
|
if x > eps and y > eps: |
|
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) |
|
return canvas |
|
|
|
|
|
def draw_facepose(canvas, all_lmks): |
|
H, W, C = canvas.shape |
|
for lmks in all_lmks: |
|
lmks = np.array(lmks) |
|
for lmk in lmks: |
|
x, y = lmk |
|
x = int(x * W) |
|
y = int(y * H) |
|
if x > eps and y > eps: |
|
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) |
|
return canvas |
|
|
|
|
|
|
|
|
|
def handDetect(candidate, subset, oriImg): |
|
|
|
|
|
ratioWristElbow = 0.33 |
|
detect_result = [] |
|
image_height, image_width = oriImg.shape[0:2] |
|
for person in subset.astype(int): |
|
|
|
has_left = np.sum(person[[5, 6, 7]] == -1) == 0 |
|
has_right = np.sum(person[[2, 3, 4]] == -1) == 0 |
|
if not (has_left or has_right): |
|
continue |
|
hands = [] |
|
|
|
if has_left: |
|
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] |
|
x1, y1 = candidate[left_shoulder_index][:2] |
|
x2, y2 = candidate[left_elbow_index][:2] |
|
x3, y3 = candidate[left_wrist_index][:2] |
|
hands.append([x1, y1, x2, y2, x3, y3, True]) |
|
|
|
if has_right: |
|
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] |
|
x1, y1 = candidate[right_shoulder_index][:2] |
|
x2, y2 = candidate[right_elbow_index][:2] |
|
x3, y3 = candidate[right_wrist_index][:2] |
|
hands.append([x1, y1, x2, y2, x3, y3, False]) |
|
|
|
for x1, y1, x2, y2, x3, y3, is_left in hands: |
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x3 + ratioWristElbow * (x3 - x2) |
|
y = y3 + ratioWristElbow * (y3 - y2) |
|
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) |
|
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) |
|
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) |
|
|
|
|
|
|
|
x -= width / 2 |
|
y -= width / 2 |
|
|
|
if x < 0: x = 0 |
|
if y < 0: y = 0 |
|
width1 = width |
|
width2 = width |
|
if x + width > image_width: width1 = image_width - x |
|
if y + width > image_height: width2 = image_height - y |
|
width = min(width1, width2) |
|
|
|
if width >= 20: |
|
detect_result.append([int(x), int(y), int(width), is_left]) |
|
|
|
''' |
|
return value: [[x, y, w, True if left hand else False]]. |
|
width=height since the network require squared input. |
|
x, y is the coordinate of top left |
|
''' |
|
return detect_result |
|
|
|
|
|
|
|
def faceDetect(candidate, subset, oriImg): |
|
|
|
detect_result = [] |
|
image_height, image_width = oriImg.shape[0:2] |
|
for person in subset.astype(int): |
|
has_head = person[0] > -1 |
|
if not has_head: |
|
continue |
|
|
|
has_left_eye = person[14] > -1 |
|
has_right_eye = person[15] > -1 |
|
has_left_ear = person[16] > -1 |
|
has_right_ear = person[17] > -1 |
|
|
|
if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear): |
|
continue |
|
|
|
head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]] |
|
|
|
width = 0.0 |
|
x0, y0 = candidate[head][:2] |
|
|
|
if has_left_eye: |
|
x1, y1 = candidate[left_eye][:2] |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 3.0) |
|
|
|
if has_right_eye: |
|
x1, y1 = candidate[right_eye][:2] |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 3.0) |
|
|
|
if has_left_ear: |
|
x1, y1 = candidate[left_ear][:2] |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 1.5) |
|
|
|
if has_right_ear: |
|
x1, y1 = candidate[right_ear][:2] |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 1.5) |
|
|
|
x, y = x0, y0 |
|
|
|
x -= width |
|
y -= width |
|
|
|
if x < 0: |
|
x = 0 |
|
|
|
if y < 0: |
|
y = 0 |
|
|
|
width1 = width * 2 |
|
width2 = width * 2 |
|
|
|
if x + width > image_width: |
|
width1 = image_width - x |
|
|
|
if y + width > image_height: |
|
width2 = image_height - y |
|
|
|
width = min(width1, width2) |
|
|
|
if width >= 20: |
|
detect_result.append([int(x), int(y), int(width)]) |
|
|
|
return detect_result |
|
|
|
|
|
|
|
def npmax(array): |
|
arrayindex = array.argmax(1) |
|
arrayvalue = array.max(1) |
|
i = arrayvalue.argmax() |
|
j = arrayindex[i] |
|
return i, j |
|
|