|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_size, hidden_size, num_classes, dropout_prob=0.1): |
|
super(MLP, self).__init__() |
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.relu = nn.ReLU() |
|
self.dropout = nn.Dropout(dropout_prob) |
|
self.fc2 = nn.Linear(hidden_size, num_classes) |
|
|
|
def forward(self, x): |
|
out = self.fc1(x) |
|
out = self.relu(out) |
|
out = self.dropout(out) |
|
out = self.fc2(out) |
|
return out |
|
|
|
|
|
def show_anns(anns, color_code='auto'): |
|
if len(anns) == 0: |
|
return |
|
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) |
|
ax = plt.gca() |
|
ax.set_autoscale_on(False) |
|
polygons = [] |
|
color = [] |
|
for ann in sorted_anns: |
|
m = ann['segmentation'] |
|
img = np.ones((m.shape[0], m.shape[1], 3)) |
|
color_mask = np.random.random((1, 3)).tolist()[0] |
|
if color_code == 'auto': |
|
for i in range(3): |
|
img[:,:,i] = color_mask[i] |
|
elif color_code == 'red': |
|
for i in range(3): |
|
img[:,:,0] = 1 |
|
img[:,:,1] = 0 |
|
img[:,:,2] = 0 |
|
else: |
|
for i in range(3): |
|
img[:,:,0] = 0 |
|
img[:,:,1] = 0 |
|
img[:,:,2] = 1 |
|
return np.dstack((img, m*0.35)) |
|
|
|
|
|
def show_points(coords, labels, ax, marker_size=375): |
|
pos_points = coords[labels==1] |
|
neg_points = coords[labels==0] |
|
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', |
|
s=marker_size, edgecolor='white', linewidth=1.25) |
|
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', |
|
s=marker_size, edgecolor='white', linewidth=1.25) |
|
|
|
def ram_show_mask(m): |
|
img = np.ones((m.shape[0], m.shape[1], 3)) |
|
color_mask = np.random.random((1, 3)).tolist()[0] |
|
for i in range(3): |
|
img[:,:,0] = 1 |
|
img[:,:,1] = 0 |
|
img[:,:,2] = 0 |
|
|
|
return np.dstack((img, m*0.35)) |
|
|
|
|
|
def iou(mask1, mask2): |
|
intersection = np.logical_and(mask1, mask2) |
|
union = np.logical_or(mask1, mask2) |
|
iou_score = np.sum(intersection) / np.sum(union) |
|
return iou_score |
|
|
|
|
|
def sort_and_deduplicate(sam_masks, iou_threshold=0.8): |
|
|
|
sorted_masks = sorted(sam_masks, key=lambda x: x['area'], reverse=True) |
|
|
|
|
|
filtered_masks = [] |
|
for mask in sorted_masks: |
|
duplicate = False |
|
for filtered_mask in filtered_masks: |
|
if iou(mask['segmentation'], filtered_mask['segmentation']) > iou_threshold: |
|
duplicate = True |
|
break |
|
|
|
if not duplicate: |
|
filtered_masks.append(mask) |
|
|
|
return filtered_masks |
|
|
|
|
|
relation_classes = ['over', |
|
'in front of', |
|
'beside', |
|
'on', |
|
'in', |
|
'attached to', |
|
'hanging from', |
|
'on back of', |
|
'falling off', |
|
'going down', |
|
'painted on', |
|
'walking on', |
|
'running on', |
|
'crossing', |
|
'standing on', |
|
'lying on', |
|
'sitting on', |
|
'flying over', |
|
'jumping over', |
|
'jumping from', |
|
'wearing', |
|
'holding', |
|
'carrying', |
|
'looking at', |
|
'guiding', |
|
'kissing', |
|
'eating', |
|
'drinking', |
|
'feeding', |
|
'biting', |
|
'catching', |
|
'picking', |
|
'playing with', |
|
'chasing', |
|
'climbing', |
|
'cleaning', |
|
'playing', |
|
'touching', |
|
'pushing', |
|
'pulling', |
|
'opening', |
|
'cooking', |
|
'talking to', |
|
'throwing', |
|
'slicing', |
|
'driving', |
|
'riding', |
|
'parked on', |
|
'driving on', |
|
'about to hit', |
|
'kicking', |
|
'swinging', |
|
'entering', |
|
'exiting', |
|
'enclosing', |
|
'leaning on',] |
|
|