|
import random |
|
import numpy as np |
|
import os,sys |
|
import requests |
|
import torch |
|
import torchvision.transforms as torchvision_T |
|
from PIL import Image |
|
|
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
|
|
|
|
|
|
|
|
import cv2 |
|
import ast |
|
|
|
colors = [ |
|
(0, 255, 0), |
|
(0, 0, 255), |
|
(255, 255, 0), |
|
(255, 0, 255), |
|
(0, 255, 255), |
|
(114, 128, 250), |
|
(0, 165, 255), |
|
(0, 128, 0), |
|
(144, 238, 144), |
|
(238, 238, 175), |
|
(255, 191, 0), |
|
(0, 128, 0), |
|
(226, 43, 138), |
|
(255, 0, 255), |
|
(0, 215, 255), |
|
(255, 0, 0), |
|
] |
|
|
|
color_map = { |
|
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors) |
|
} |
|
|
|
|
|
def is_overlapping(rect1, rect2): |
|
x1, y1, x2, y2 = rect1 |
|
x3, y3, x4, y4 = rect2 |
|
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) |
|
|
|
|
|
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1): |
|
"""_summary_ |
|
Args: |
|
image (_type_): image or image path |
|
collect_entity_location (_type_): _description_ |
|
""" |
|
if isinstance(image, Image.Image): |
|
image_h = image.height |
|
image_w = image.width |
|
image = np.array(image)[:, :, [2, 1, 0]] |
|
elif isinstance(image, str): |
|
if os.path.exists(image): |
|
pil_img = Image.open(image).convert("RGB") |
|
image = np.array(pil_img)[:, :, [2, 1, 0]] |
|
image_h = pil_img.height |
|
image_w = pil_img.width |
|
else: |
|
raise ValueError(f"invaild image path, {image}") |
|
elif isinstance(image, torch.Tensor): |
|
|
|
image_tensor = image.cpu() |
|
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] |
|
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] |
|
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean |
|
pil_img = torchvision_T.ToPILImage()(image_tensor) |
|
image_h = pil_img.height |
|
image_w = pil_img.width |
|
image = np.array(pil_img)[:, :, [2, 1, 0]] |
|
else: |
|
raise ValueError(f"invaild image format, {type(image)} for {image}") |
|
|
|
if len(entities) == 0: |
|
return image |
|
|
|
indices = list(range(len(entities))) |
|
if entity_index >= 0: |
|
indices = [entity_index] |
|
|
|
|
|
entities = entities[:len(color_map)] |
|
|
|
new_image = image.copy() |
|
previous_bboxes = [] |
|
|
|
text_size = 1 |
|
|
|
text_line = 1 |
|
box_line = 3 |
|
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) |
|
base_height = int(text_height * 0.675) |
|
text_offset_original = text_height - base_height |
|
text_spaces = 3 |
|
|
|
|
|
used_colors = colors |
|
|
|
color_id = -1 |
|
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities): |
|
color_id += 1 |
|
if entity_idx not in indices: |
|
continue |
|
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes): |
|
|
|
|
|
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h) |
|
|
|
|
|
|
|
color = used_colors[color_id] |
|
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) |
|
|
|
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 |
|
|
|
x1 = orig_x1 - l_o |
|
y1 = orig_y1 - l_o |
|
|
|
if y1 < text_height + text_offset_original + 2 * text_spaces: |
|
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces |
|
x1 = orig_x1 + r_o |
|
|
|
|
|
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) |
|
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 |
|
|
|
for prev_bbox in previous_bboxes: |
|
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox): |
|
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) |
|
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) |
|
y1 += (text_height + text_offset_original + 2 * text_spaces) |
|
|
|
if text_bg_y2 >= image_h: |
|
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) |
|
text_bg_y2 = image_h |
|
y1 = image_h |
|
break |
|
|
|
alpha = 0.5 |
|
for i in range(text_bg_y1, text_bg_y2): |
|
for j in range(text_bg_x1, text_bg_x2): |
|
if i < image_h and j < image_w: |
|
if j < text_bg_x1 + 1.35 * c_width: |
|
|
|
bg_color = color |
|
else: |
|
|
|
bg_color = [255, 255, 255] |
|
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8) |
|
|
|
cv2.putText( |
|
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA |
|
) |
|
|
|
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2)) |
|
|
|
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]]) |
|
if save_path: |
|
pil_image.save(save_path) |
|
if show: |
|
pil_image.show() |
|
|
|
return pil_image |
|
|
|
def load_kosmos_model(device): |
|
ckpt = "ydshieh/kosmos-2-patch14-224" |
|
kosmos_model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True).to(device) |
|
kosmos_processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True) |
|
return kosmos_model, kosmos_processor |
|
|
|
def kosmos_generate_predictions(image_input, text_input, kosmos_model, kosmos_processor): |
|
if kosmos_model is None: |
|
return None, None, None |
|
|
|
|
|
|
|
user_image_path = "/tmp/user_input_test_image.jpg" |
|
image_input.save(user_image_path) |
|
|
|
image_input = Image.open(user_image_path) |
|
|
|
if text_input == "Brief": |
|
text_input = "<grounding>An image of" |
|
elif text_input == "Detailed": |
|
text_input = "<grounding>Describe this image in detail:" |
|
else: |
|
text_input = f"<grounding>{text_input}" |
|
|
|
inputs = kosmos_processor(text=text_input, images=image_input, return_tensors="pt") |
|
|
|
generated_ids = kosmos_model.generate( |
|
pixel_values=inputs["pixel_values"].to("cuda"), |
|
input_ids=inputs["input_ids"][:, :-1].to("cuda"), |
|
attention_mask=inputs["attention_mask"][:, :-1].to("cuda"), |
|
img_features=None, |
|
img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"), |
|
use_cache=True, |
|
max_new_tokens=128, |
|
) |
|
generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
processed_text, entities = kosmos_processor.post_process_generation(generated_text) |
|
|
|
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False) |
|
|
|
color_id = -1 |
|
entity_info = [] |
|
filtered_entities = [] |
|
for entity in entities: |
|
entity_name, (start, end), bboxes = entity |
|
if start == end: |
|
|
|
continue |
|
color_id += 1 |
|
|
|
|
|
|
|
entity_info.append(((start, end), color_id)) |
|
filtered_entities.append(entity) |
|
|
|
colored_text = [] |
|
prev_start = 0 |
|
end = 0 |
|
for idx, ((start, end), color_id) in enumerate(entity_info): |
|
if start > prev_start: |
|
colored_text.append((processed_text[prev_start:start], None)) |
|
colored_text.append((processed_text[start:end], f"{color_id}")) |
|
prev_start = end |
|
|
|
if end < len(processed_text): |
|
colored_text.append((processed_text[end:len(processed_text)], None)) |
|
|
|
return annotated_image, colored_text, str(filtered_entities) |
|
|