|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import inspect |
|
import warnings |
|
from functools import partial |
|
from typing import Any, Dict, Optional, Union |
|
|
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from jax import lax |
|
|
|
from ..models.auto import ( |
|
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, |
|
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, |
|
) |
|
from ..utils import ModelOutput, logging |
|
from .configuration_utils import GenerationConfig |
|
from .flax_logits_process import ( |
|
FlaxForcedBOSTokenLogitsProcessor, |
|
FlaxForcedEOSTokenLogitsProcessor, |
|
FlaxForceTokensLogitsProcessor, |
|
FlaxLogitsProcessorList, |
|
FlaxMinLengthLogitsProcessor, |
|
FlaxSuppressTokensAtBeginLogitsProcessor, |
|
FlaxSuppressTokensLogitsProcessor, |
|
FlaxTemperatureLogitsWarper, |
|
FlaxTopKLogitsWarper, |
|
FlaxTopPLogitsWarper, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxGreedySearchOutput(ModelOutput): |
|
""" |
|
Flax Base class for outputs of decoder-only generation models using greedy search. |
|
|
|
|
|
Args: |
|
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): |
|
The generated sequences. |
|
""" |
|
|
|
sequences: jnp.ndarray = None |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxSampleOutput(ModelOutput): |
|
""" |
|
Flax Base class for outputs of decoder-only generation models using sampling. |
|
|
|
|
|
Args: |
|
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): |
|
The generated sequences. |
|
""" |
|
|
|
sequences: jnp.ndarray = None |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxBeamSearchOutput(ModelOutput): |
|
""" |
|
Flax Base class for outputs of decoder-only generation models using greedy search. |
|
|
|
|
|
Args: |
|
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`): |
|
The generated sequences. |
|
scores (`jnp.ndarray` of shape `(batch_size,)`): |
|
The scores (log probabilities) of the generated sequences. |
|
""" |
|
|
|
sequences: jnp.ndarray = None |
|
scores: jnp.ndarray = None |
|
|
|
|
|
@flax.struct.dataclass |
|
class GreedyState: |
|
cur_len: jnp.ndarray |
|
sequences: jnp.ndarray |
|
running_token: jnp.ndarray |
|
is_sent_finished: jnp.ndarray |
|
model_kwargs: Dict[str, jnp.ndarray] |
|
|
|
|
|
@flax.struct.dataclass |
|
class SampleState: |
|
cur_len: jnp.ndarray |
|
sequences: jnp.ndarray |
|
running_token: jnp.ndarray |
|
is_sent_finished: jnp.ndarray |
|
prng_key: jnp.ndarray |
|
model_kwargs: Dict[str, jnp.ndarray] |
|
|
|
|
|
@flax.struct.dataclass |
|
class BeamSearchState: |
|
cur_len: jnp.ndarray |
|
running_sequences: jnp.ndarray |
|
running_scores: jnp.ndarray |
|
sequences: jnp.ndarray |
|
scores: jnp.ndarray |
|
is_sent_finished: jnp.ndarray |
|
model_kwargs: Dict[str, jnp.ndarray] |
|
|
|
|
|
class FlaxGenerationMixin: |
|
""" |
|
A class containing all functions for auto-regressive text generation, to be used as a mixin in |
|
[`FlaxPreTrainedModel`]. |
|
|
|
The class exposes [`~generation.FlaxGenerationMixin.generate`], which can be used for: |
|
- *greedy decoding* by calling [`~generation.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and |
|
`do_sample=False` |
|
- *multinomial sampling* by calling [`~generation.FlaxGenerationMixin._sample`] if `num_beams=1` and |
|
`do_sample=True` |
|
- *beam-search decoding* by calling [`~generation.FlaxGenerationMixin._beam_search`] if `num_beams>1` and |
|
`do_sample=False` |
|
|
|
You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To |
|
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). |
|
""" |
|
|
|
def prepare_inputs_for_generation(self, *args, **kwargs): |
|
raise NotImplementedError( |
|
"A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`." |
|
) |
|
|
|
@staticmethod |
|
def _run_loop_in_debug(cond_fn, body_fn, init_state): |
|
""" |
|
Run generation in untraced mode. This should only be used for debugging purposes. |
|
""" |
|
state = init_state |
|
while cond_fn(state): |
|
state = body_fn(state) |
|
return state |
|
|
|
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs): |
|
encoder_kwargs = { |
|
argument: value |
|
for argument, value in model_kwargs.items() |
|
if not (argument.startswith("decoder_") or argument.startswith("cross_attn")) |
|
} |
|
model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs) |
|
return model_kwargs |
|
|
|
def _prepare_decoder_input_ids_for_generation( |
|
self, |
|
batch_size: int, |
|
decoder_start_token_id: int = None, |
|
bos_token_id: int = None, |
|
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, |
|
) -> jnp.ndarray: |
|
if model_kwargs is not None and "decoder_input_ids" in model_kwargs: |
|
|
|
decoder_input_ids = model_kwargs.pop("decoder_input_ids") |
|
if decoder_input_ids is not None: |
|
return decoder_input_ids |
|
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) |
|
return jnp.array(decoder_start_token_id, dtype="i4").reshape(1, -1).repeat(batch_size, axis=0) |
|
|
|
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int: |
|
|
|
|
|
decoder_start_token_id = ( |
|
decoder_start_token_id |
|
if decoder_start_token_id is not None |
|
else self.generation_config.decoder_start_token_id |
|
) |
|
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id |
|
if decoder_start_token_id is not None: |
|
return decoder_start_token_id |
|
elif ( |
|
hasattr(self.config, "decoder") |
|
and hasattr(self.config.decoder, "decoder_start_token_id") |
|
and self.config.decoder.decoder_start_token_id is not None |
|
): |
|
return self.config.decoder.decoder_start_token_id |
|
elif bos_token_id is not None: |
|
return bos_token_id |
|
elif ( |
|
hasattr(self.config, "decoder") |
|
and hasattr(self.config.decoder, "bos_token_id") |
|
and self.config.decoder.bos_token_id is not None |
|
): |
|
return self.config.decoder.bos_token_id |
|
raise ValueError( |
|
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." |
|
) |
|
|
|
@staticmethod |
|
def _expand_to_num_beams(tensor, num_beams): |
|
return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:]) |
|
|
|
def _adapt_logits_for_beam_search(self, logits): |
|
""" |
|
This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam |
|
search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`]. |
|
""" |
|
return logits |
|
|
|
def _validate_model_class(self): |
|
""" |
|
Confirms that the model class is compatible with generation. If not, raises an exception that points to the |
|
right class to use. |
|
""" |
|
if not self.can_generate(): |
|
generate_compatible_mappings = [ |
|
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, |
|
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, |
|
] |
|
generate_compatible_classes = set() |
|
for model_mapping in generate_compatible_mappings: |
|
supported_models = model_mapping.get(type(self.config), default=None) |
|
if supported_models is not None: |
|
generate_compatible_classes.add(supported_models.__name__) |
|
exception_message = ( |
|
f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as " |
|
"it doesn't have a language model head." |
|
) |
|
if generate_compatible_classes: |
|
exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}" |
|
raise TypeError(exception_message) |
|
|
|
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): |
|
"""Validates model kwargs for generation. Generate argument typos will also be caught here.""" |
|
unused_model_args = [] |
|
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) |
|
|
|
|
|
if "kwargs" in model_args or "model_kwargs" in model_args: |
|
model_args |= set(inspect.signature(self.__call__).parameters) |
|
for key, value in model_kwargs.items(): |
|
if value is not None and key not in model_args: |
|
unused_model_args.append(key) |
|
|
|
if unused_model_args: |
|
raise ValueError( |
|
f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" |
|
" generate arguments will also show up in this list)" |
|
) |
|
|
|
def generate( |
|
self, |
|
input_ids: jnp.ndarray, |
|
generation_config: Optional[GenerationConfig] = None, |
|
prng_key: Optional[jnp.ndarray] = None, |
|
trace: bool = True, |
|
params: Optional[Dict[str, jnp.ndarray]] = None, |
|
logits_processor: Optional[FlaxLogitsProcessorList] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Generates sequences of token ids for models with a language modeling head. |
|
|
|
Parameters: |
|
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): |
|
The sequence used as a prompt for the generation. |
|
generation_config (`~generation.GenerationConfig`, *optional*): |
|
The generation configuration to be used as base parametrization for the generation call. `**kwargs` |
|
passed to generate matching the attributes of `generation_config` will override them. If |
|
`generation_config` is not provided, the default will be used, which had the following loading |
|
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model |
|
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s |
|
default values, whose documentation should be checked to parameterize generation. |
|
trace (`bool`, *optional*, defaults to `True`): |
|
Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a |
|
considerably slower runtime. |
|
params (`Dict[str, jnp.ndarray]`, *optional*): |
|
Optionally the model parameters can be passed. Can be useful for parallelized generation. |
|
logits_processor (`FlaxLogitsProcessorList `, *optional*): |
|
Custom logits processors that complement the default logits processors built from arguments and |
|
generation config. If a logit processor is passed that is already created with the arguments or a |
|
generation config an error is thrown. This feature is intended for advanced users. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be |
|
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder |
|
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. |
|
|
|
Return: |
|
[`~utils.ModelOutput`]. |
|
|
|
""" |
|
|
|
self._validate_model_class() |
|
|
|
|
|
if generation_config is None: |
|
|
|
|
|
|
|
|
|
if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash( |
|
self.generation_config |
|
): |
|
new_generation_config = GenerationConfig.from_model_config(self.config) |
|
if new_generation_config != self.generation_config: |
|
warnings.warn( |
|
"You have modified the pretrained model configuration to control generation. This is a" |
|
" deprecated strategy to control generation and will be removed soon, in a future version." |
|
" Please use and modify the model generation configuration (see" |
|
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )" |
|
) |
|
self.generation_config = new_generation_config |
|
generation_config = self.generation_config |
|
|
|
generation_config = copy.deepcopy(generation_config) |
|
model_kwargs = generation_config.update(**kwargs) |
|
generation_config.validate() |
|
self._validate_model_kwargs(model_kwargs.copy()) |
|
|
|
logits_processor = logits_processor if logits_processor is not None else FlaxLogitsProcessorList() |
|
|
|
|
|
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) |
|
|
|
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: |
|
if model_kwargs.get("attention_mask") is None: |
|
logger.warning( |
|
"The attention mask and the pad token id were not set. As a consequence, you may observe " |
|
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." |
|
) |
|
eos_token_id = generation_config.eos_token_id |
|
if isinstance(eos_token_id, list): |
|
eos_token_id = eos_token_id[0] |
|
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") |
|
generation_config.pad_token_id = eos_token_id |
|
|
|
if generation_config.decoder_start_token_id is None and self.config.is_encoder_decoder: |
|
raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.") |
|
|
|
|
|
if not self.config.is_encoder_decoder and not trace: |
|
if ( |
|
generation_config.pad_token_id is not None |
|
and jnp.sum(input_ids[:, -1] == generation_config.pad_token_id) > 0 |
|
): |
|
logger.warning( |
|
"A decoder-only architecture is being used, but right-padding was detected! For correct " |
|
"generation results, please set `padding_side='left'` when initializing the tokenizer." |
|
) |
|
|
|
batch_size = input_ids.shape[0] |
|
|
|
if self.config.is_encoder_decoder: |
|
|
|
if model_kwargs.get("encoder_outputs") is None: |
|
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs) |
|
|
|
input_ids = self._prepare_decoder_input_ids_for_generation( |
|
batch_size, |
|
decoder_start_token_id=generation_config.decoder_start_token_id, |
|
bos_token_id=generation_config.bos_token_id, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
|
|
input_ids_seq_length = input_ids.shape[-1] |
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: |
|
|
|
warnings.warn( |
|
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " |
|
"to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.", |
|
UserWarning, |
|
) |
|
elif generation_config.max_new_tokens is not None: |
|
if not has_default_max_length and generation_config.max_length is not None: |
|
logger.warning( |
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" |
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " |
|
"Please refer to the documentation for more information. " |
|
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" |
|
) |
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length |
|
|
|
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: |
|
raise ValueError( |
|
f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger than" |
|
f" the maximum length ({generation_config.max_length})" |
|
) |
|
if input_ids_seq_length >= generation_config.max_length: |
|
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" |
|
logger.warning( |
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" |
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" |
|
" increasing`max_new_tokens`." |
|
) |
|
|
|
logits_processor = self._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_seq_length, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
if not generation_config.do_sample and generation_config.num_beams == 1: |
|
return self._greedy_search( |
|
input_ids, |
|
generation_config.max_length, |
|
generation_config.pad_token_id, |
|
generation_config.eos_token_id, |
|
logits_processor=logits_processor, |
|
trace=trace, |
|
params=params, |
|
model_kwargs=model_kwargs, |
|
) |
|
elif generation_config.do_sample and generation_config.num_beams == 1: |
|
logits_warper = self._get_logits_warper(generation_config=generation_config) |
|
return self._sample( |
|
input_ids, |
|
generation_config.max_length, |
|
generation_config.pad_token_id, |
|
generation_config.eos_token_id, |
|
prng_key, |
|
logits_warper=logits_warper, |
|
logits_processor=logits_processor, |
|
trace=trace, |
|
params=params, |
|
model_kwargs=model_kwargs, |
|
) |
|
elif not generation_config.do_sample and generation_config.num_beams > 1: |
|
|
|
input_ids = self._expand_to_num_beams(input_ids, num_beams=generation_config.num_beams) |
|
|
|
if "encoder_outputs" in model_kwargs: |
|
model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams( |
|
model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=generation_config.num_beams |
|
) |
|
|
|
for kwarg in ["attention_mask", "decoder_attention_mask"]: |
|
if kwarg in model_kwargs: |
|
model_kwargs[kwarg] = self._expand_to_num_beams( |
|
model_kwargs[kwarg], num_beams=generation_config.num_beams |
|
) |
|
|
|
return self._beam_search( |
|
input_ids, |
|
generation_config.max_length, |
|
generation_config.pad_token_id, |
|
generation_config.eos_token_id, |
|
length_penalty=generation_config.length_penalty, |
|
early_stopping=generation_config.early_stopping, |
|
logits_processor=logits_processor, |
|
trace=trace, |
|
params=params, |
|
num_return_sequences=generation_config.num_return_sequences, |
|
model_kwargs=model_kwargs, |
|
) |
|
else: |
|
raise NotImplementedError("`Beam sampling is currently not implemented.") |
|
|
|
def _get_logits_warper(self, generation_config: GenerationConfig) -> FlaxLogitsProcessorList: |
|
""" |
|
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`] |
|
instances used for multinomial sampling. |
|
""" |
|
warpers = FlaxLogitsProcessorList() |
|
|
|
if generation_config.temperature is not None and generation_config.temperature != 1.0: |
|
warpers.append(FlaxTemperatureLogitsWarper(generation_config.temperature)) |
|
if generation_config.top_k is not None and generation_config.top_k != 0: |
|
warpers.append(FlaxTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1)) |
|
if generation_config.top_p is not None and generation_config.top_p < 1.0: |
|
warpers.append(FlaxTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1)) |
|
|
|
return warpers |
|
|
|
def _get_logits_processor( |
|
self, |
|
generation_config: GenerationConfig, |
|
input_ids_seq_length: int, |
|
logits_processor: Optional[FlaxLogitsProcessorList], |
|
) -> FlaxLogitsProcessorList: |
|
""" |
|
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`] |
|
instances used to modify the scores of the language model head. |
|
""" |
|
processors = FlaxLogitsProcessorList() |
|
|
|
if ( |
|
generation_config.min_length is not None |
|
and generation_config.eos_token_id is not None |
|
and generation_config.min_length > -1 |
|
): |
|
processors.append( |
|
FlaxMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id) |
|
) |
|
if generation_config.forced_bos_token_id is not None: |
|
processors.append(FlaxForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id)) |
|
if generation_config.forced_eos_token_id is not None: |
|
processors.append( |
|
FlaxForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id) |
|
) |
|
if generation_config.suppress_tokens is not None: |
|
processors.append(FlaxSuppressTokensLogitsProcessor(generation_config.suppress_tokens)) |
|
if generation_config.begin_suppress_tokens is not None: |
|
begin_index = input_ids_seq_length |
|
begin_index = ( |
|
begin_index |
|
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) |
|
else begin_index + 1 |
|
) |
|
if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0: |
|
|
|
begin_index += generation_config.forced_decoder_ids[-1][0] |
|
processors.append( |
|
FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index) |
|
) |
|
if generation_config.forced_decoder_ids is not None: |
|
forced_decoder_ids = [ |
|
[input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids |
|
] |
|
processors.append(FlaxForceTokensLogitsProcessor(forced_decoder_ids)) |
|
processors = self._merge_criteria_processor_list(processors, logits_processor) |
|
|
|
return processors |
|
|
|
def _merge_criteria_processor_list( |
|
self, |
|
default_list: FlaxLogitsProcessorList, |
|
custom_list: FlaxLogitsProcessorList, |
|
) -> FlaxLogitsProcessorList: |
|
if len(custom_list) == 0: |
|
return default_list |
|
for default in default_list: |
|
for custom in custom_list: |
|
if type(custom) is type(default): |
|
object_type = "logits processor" |
|
raise ValueError( |
|
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" |
|
f" `generate`, but it has already been created with the values {default}. {default} has been" |
|
" created by passing the corresponding arguments to generate or by the model's config default" |
|
f" values. If you just want to change the default values of {object_type} consider passing" |
|
f" them as arguments to `generate` instead of using a custom {object_type}." |
|
) |
|
default_list.extend(custom_list) |
|
return default_list |
|
|
|
def _greedy_search( |
|
self, |
|
input_ids: None, |
|
max_length: Optional[int] = None, |
|
pad_token_id: Optional[int] = None, |
|
eos_token_id: Optional[int] = None, |
|
logits_processor: Optional[FlaxLogitsProcessorList] = None, |
|
trace: bool = True, |
|
params: Optional[Dict[str, jnp.ndarray]] = None, |
|
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, |
|
): |
|
|
|
max_length = max_length if max_length is not None else self.generation_config.max_length |
|
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id |
|
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id |
|
|
|
batch_size, cur_len = input_ids.shape |
|
|
|
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) |
|
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) |
|
cur_len = jnp.array(cur_len) |
|
|
|
|
|
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) |
|
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) |
|
|
|
|
|
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) |
|
|
|
|
|
|
|
model = self.decode if self.config.is_encoder_decoder else self |
|
|
|
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) |
|
|
|
|
|
state = GreedyState( |
|
cur_len=cur_len, |
|
sequences=sequences, |
|
running_token=input_ids, |
|
is_sent_finished=is_sent_finished, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
def greedy_search_cond_fn(state): |
|
"""state termination condition fn.""" |
|
has_reached_max_length = state.cur_len == max_length |
|
all_sequence_finished = jnp.all(state.is_sent_finished) |
|
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) |
|
return ~finish_generation |
|
|
|
def greedy_search_body_fn(state): |
|
"""state update fn.""" |
|
model_outputs = model(state.running_token, params=params, **state.model_kwargs) |
|
logits = model_outputs.logits[:, -1] |
|
|
|
|
|
logits = logits_processor(state.sequences, logits, state.cur_len) |
|
|
|
next_token = jnp.argmax(logits, axis=-1) |
|
|
|
next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished |
|
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) |
|
next_token = next_token[:, None] |
|
|
|
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) |
|
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) |
|
return GreedyState( |
|
cur_len=state.cur_len + 1, |
|
sequences=next_sequences, |
|
running_token=next_token, |
|
is_sent_finished=next_is_sent_finished, |
|
model_kwargs=next_model_kwargs, |
|
) |
|
|
|
|
|
if input_ids.shape[1] > 1: |
|
state = greedy_search_body_fn(state) |
|
|
|
if not trace: |
|
state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state) |
|
else: |
|
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state) |
|
|
|
return FlaxGreedySearchOutput(sequences=state.sequences) |
|
|
|
def _sample( |
|
self, |
|
input_ids: None, |
|
max_length: Optional[int] = None, |
|
pad_token_id: Optional[int] = None, |
|
eos_token_id: Optional[int] = None, |
|
prng_key: Optional[jnp.ndarray] = None, |
|
logits_processor: Optional[FlaxLogitsProcessorList] = None, |
|
logits_warper: Optional[FlaxLogitsProcessorList] = None, |
|
trace: bool = True, |
|
params: Optional[Dict[str, jnp.ndarray]] = None, |
|
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, |
|
): |
|
|
|
max_length = max_length if max_length is not None else self.generation_config.max_length |
|
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id |
|
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id |
|
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) |
|
|
|
batch_size, cur_len = input_ids.shape |
|
|
|
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) |
|
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) |
|
cur_len = jnp.array(cur_len) |
|
|
|
|
|
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) |
|
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) |
|
|
|
|
|
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) |
|
|
|
|
|
|
|
model = self.decode if self.config.is_encoder_decoder else self |
|
|
|
|
|
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs) |
|
|
|
|
|
state = SampleState( |
|
cur_len=cur_len, |
|
sequences=sequences, |
|
running_token=input_ids, |
|
is_sent_finished=is_sent_finished, |
|
prng_key=prng_key, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
def sample_search_cond_fn(state): |
|
"""state termination condition fn.""" |
|
has_reached_max_length = state.cur_len == max_length |
|
all_sequence_finished = jnp.all(state.is_sent_finished) |
|
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished) |
|
return ~finish_generation |
|
|
|
def sample_search_body_fn(state): |
|
"""state update fn.""" |
|
prng_key, prng_key_next = jax.random.split(state.prng_key) |
|
model_outputs = model(state.running_token, params=params, **state.model_kwargs) |
|
|
|
logits = model_outputs.logits[:, -1] |
|
|
|
|
|
logits = logits_processor(state.sequences, logits, state.cur_len) |
|
|
|
logits = logits_warper(logits, logits, state.cur_len) |
|
|
|
next_token = jax.random.categorical(prng_key, logits, axis=-1) |
|
|
|
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id) |
|
next_token = next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished |
|
next_token = next_token[:, None] |
|
|
|
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len)) |
|
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) |
|
|
|
return SampleState( |
|
cur_len=state.cur_len + 1, |
|
sequences=next_sequences, |
|
running_token=next_token, |
|
is_sent_finished=next_is_sent_finished, |
|
model_kwargs=next_model_kwargs, |
|
prng_key=prng_key_next, |
|
) |
|
|
|
|
|
if input_ids.shape[1] > 1: |
|
state = sample_search_body_fn(state) |
|
|
|
if not trace: |
|
state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state) |
|
else: |
|
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state) |
|
|
|
return FlaxSampleOutput(sequences=state.sequences) |
|
|
|
def _beam_search( |
|
self, |
|
input_ids: None, |
|
max_length: Optional[int] = None, |
|
pad_token_id: Optional[int] = None, |
|
eos_token_id: Optional[int] = None, |
|
length_penalty: Optional[float] = None, |
|
early_stopping: Optional[Union[bool, str]] = None, |
|
logits_processor: Optional[FlaxLogitsProcessorList] = None, |
|
trace: bool = True, |
|
params: Optional[Dict[str, jnp.ndarray]] = None, |
|
num_return_sequences: Optional[int] = None, |
|
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, |
|
): |
|
""" |
|
This beam search function is heavily inspired by Flax's official example: |
|
https://github.com/google/flax/blob/main/examples/wmt/decode.py |
|
""" |
|
|
|
def flatten_beam_dim(tensor): |
|
"""Flattens the first two dimensions of a non-scalar array.""" |
|
|
|
if tensor.ndim == 0: |
|
return tensor |
|
return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) |
|
|
|
def unflatten_beam_dim(tensor, batch_size, num_beams): |
|
"""Unflattens the first, flat batch*beam dimension of a non-scalar array.""" |
|
|
|
if tensor.ndim == 0: |
|
return tensor |
|
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:]) |
|
|
|
def gather_beams(nested, beam_indices, batch_size, new_num_beams): |
|
""" |
|
Gathers the beam slices indexed by beam_indices into new beam array. |
|
""" |
|
batch_indices = jnp.reshape( |
|
jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams) |
|
) |
|
|
|
def gather_fn(tensor): |
|
|
|
if tensor.ndim == 0: |
|
return tensor |
|
else: |
|
return tensor[batch_indices, beam_indices] |
|
|
|
return jax.tree_util.tree_map(gather_fn, nested) |
|
|
|
|
|
max_length = max_length if max_length is not None else self.generation_config.max_length |
|
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id |
|
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id |
|
length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty |
|
early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping |
|
num_return_sequences = ( |
|
num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences |
|
) |
|
|
|
batch_size, num_beams, cur_len = input_ids.shape |
|
|
|
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None) |
|
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32) |
|
cur_len = jnp.array(cur_len) |
|
|
|
|
|
sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) |
|
running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32) |
|
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0)) |
|
|
|
|
|
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_) |
|
|
|
|
|
running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1]) |
|
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7) |
|
|
|
|
|
|
|
model = self.decode if self.config.is_encoder_decoder else self |
|
|
|
|
|
if "encoder_outputs" in model_kwargs: |
|
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim( |
|
model_kwargs["encoder_outputs"]["last_hidden_state"] |
|
) |
|
for kwarg in ["attention_mask", "decoder_attention_mask"]: |
|
if kwarg in model_kwargs: |
|
model_kwargs[kwarg] = flatten_beam_dim(model_kwargs[kwarg]) |
|
|
|
|
|
model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs) |
|
|
|
|
|
state = BeamSearchState( |
|
cur_len=cur_len, |
|
running_sequences=running_sequences, |
|
running_scores=running_scores, |
|
sequences=sequences, |
|
scores=scores, |
|
is_sent_finished=is_sent_finished, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
def beam_search_cond_fn(state): |
|
"""beam search state termination condition fn.""" |
|
|
|
|
|
not_max_length_yet = state.cur_len < max_length |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if early_stopping == "never" and length_penalty > 0.0: |
|
best_running_score = state.running_scores[:, :1] / (max_length**length_penalty) |
|
else: |
|
best_running_score = state.running_scores[:, :1] / (state.cur_len**length_penalty) |
|
worst_finished_score = jnp.where( |
|
state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7) |
|
) |
|
improvement_still_possible = jnp.any(best_running_score > worst_finished_score) |
|
|
|
|
|
still_open_beam = ~(jnp.all(state.is_sent_finished) & (early_stopping is True)) |
|
|
|
return not_max_length_yet & still_open_beam & improvement_still_possible |
|
|
|
def beam_search_body_fn(state, input_ids_length=1): |
|
"""beam search state update fn.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_token = flatten_beam_dim( |
|
lax.dynamic_slice( |
|
state.running_sequences, |
|
(0, 0, state.cur_len - input_ids_length), |
|
(batch_size, num_beams, input_ids_length), |
|
) |
|
) |
|
model_outputs = model(input_token, params=params, **state.model_kwargs) |
|
|
|
logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams) |
|
cache = jax.tree_util.tree_map( |
|
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values |
|
) |
|
|
|
|
|
logits = self._adapt_logits_for_beam_search(logits) |
|
|
|
|
|
|
|
|
|
|
|
log_probs = jax.nn.log_softmax(logits) |
|
log_probs = logits_processor( |
|
flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), state.cur_len |
|
) |
|
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams) |
|
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2) |
|
vocab_size = log_probs.shape[2] |
|
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
beams_to_keep = 2 * num_beams |
|
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep) |
|
topk_beam_indices = topk_indices // vocab_size |
|
topk_running_sequences = gather_beams( |
|
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep |
|
) |
|
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2) |
|
topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id |
|
running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7) |
|
|
|
|
|
|
|
next_topk_indices = lax.top_k(running_topk_log_probs, k=num_beams)[1] |
|
next_running_sequences, next_running_scores = gather_beams( |
|
[topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
topk_log_probs = topk_log_probs / (state.cur_len**length_penalty) |
|
beams_in_batch_are_full = jnp.broadcast_to( |
|
state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape |
|
) & (early_stopping is True) |
|
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full |
|
topk_log_probs += add_penalty * np.array(-1.0e7) |
|
|
|
|
|
|
|
|
|
|
|
merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1) |
|
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1) |
|
merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1) |
|
topk_merged_indices = lax.top_k(merged_scores, k=num_beams)[1] |
|
next_sequences, next_scores, next_is_sent_finished = gather_beams( |
|
[merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams |
|
) |
|
|
|
|
|
|
|
|
|
next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams) |
|
next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams) |
|
model_outputs["past_key_values"] = jax.tree_util.tree_map(lambda x: flatten_beam_dim(x), next_cache) |
|
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs) |
|
|
|
return BeamSearchState( |
|
cur_len=state.cur_len + 1, |
|
running_scores=next_running_scores, |
|
running_sequences=next_running_sequences, |
|
scores=next_scores, |
|
sequences=next_sequences, |
|
is_sent_finished=next_is_sent_finished, |
|
model_kwargs=next_model_kwargs, |
|
) |
|
|
|
|
|
if input_ids.shape[-1] > 1: |
|
state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state) |
|
|
|
if not trace: |
|
state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state) |
|
else: |
|
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state) |
|
|
|
|
|
|
|
none_finished = jnp.any(state.is_sent_finished, axis=1) |
|
sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences) |
|
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores) |
|
|
|
|
|
sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :]) |
|
scores = flatten_beam_dim(scores[:, :num_return_sequences]) |
|
|
|
return FlaxBeamSearchOutput(sequences=sequences, scores=scores) |
|
|