|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" ALIGN model configuration""" |
|
|
|
import os |
|
from typing import TYPE_CHECKING, List, Union |
|
|
|
|
|
if TYPE_CHECKING: |
|
pass |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", |
|
} |
|
|
|
|
|
class AlignTextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`AlignTextModel`]. It is used to instantiate a |
|
ALIGN text encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the text encoder of the ALIGN |
|
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values here are |
|
copied from BERT. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the Align Text model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`AlignTextModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`AlignTextModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
Padding token id. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For |
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to |
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). |
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models |
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AlignTextConfig, AlignTextModel |
|
|
|
>>> # Initializing a AlignTextConfig with kakaobrain/align-base style configuration |
|
>>> configuration = AlignTextConfig() |
|
|
|
>>> # Initializing a AlignTextModel (with random weights) from the kakaobrain/align-base style configuration |
|
>>> model = AlignTextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "align_text_model" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.pad_token_id = pad_token_id |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "align": |
|
config_dict = config_dict["text_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class AlignVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`AlignVisionModel`]. It is used to instantiate a |
|
ALIGN vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the ALIGN |
|
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values are copied |
|
from EfficientNet (efficientnet-b7) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
image_size (`int`, *optional*, defaults to 600): |
|
The input image size. |
|
width_coefficient (`float`, *optional*, defaults to 2.0): |
|
Scaling coefficient for network width at each stage. |
|
depth_coefficient (`float`, *optional*, defaults to 3.1): |
|
Scaling coefficient for network depth at each stage. |
|
depth_divisor `int`, *optional*, defaults to 8): |
|
A unit of network width. |
|
kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`): |
|
List of kernel sizes to be used in each block. |
|
in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`): |
|
List of input channel sizes to be used in each block for convolutional layers. |
|
out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`): |
|
List of output channel sizes to be used in each block for convolutional layers. |
|
depthwise_padding (`List[int]`, *optional*, defaults to `[]`): |
|
List of block indices with square padding. |
|
strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): |
|
List of stride sizes to be used in each block for convolutional layers. |
|
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): |
|
List of the number of times each block is to repeated. |
|
expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`): |
|
List of scaling coefficient of each block. |
|
squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25): |
|
Squeeze expansion ratio. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, |
|
`"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported. |
|
hiddem_dim (`int`, *optional*, defaults to 1280): |
|
The hidden dimension of the layer before the classification head. |
|
pooling_type (`str` or `function`, *optional*, defaults to `"mean"`): |
|
Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`, |
|
`"max"`] |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
batch_norm_eps (`float`, *optional*, defaults to 1e-3): |
|
The epsilon used by the batch normalization layers. |
|
batch_norm_momentum (`float`, *optional*, defaults to 0.99): |
|
The momentum used by the batch normalization layers. |
|
drop_connect_rate (`float`, *optional*, defaults to 0.2): |
|
The drop rate for skip connections. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AlignVisionConfig, AlignVisionModel |
|
|
|
>>> # Initializing a AlignVisionConfig with kakaobrain/align-base style configuration |
|
>>> configuration = AlignVisionConfig() |
|
|
|
>>> # Initializing a AlignVisionModel (with random weights) from the kakaobrain/align-base style configuration |
|
>>> model = AlignVisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "align_vision_model" |
|
|
|
def __init__( |
|
self, |
|
num_channels: int = 3, |
|
image_size: int = 600, |
|
width_coefficient: float = 2.0, |
|
depth_coefficient: float = 3.1, |
|
depth_divisor: int = 8, |
|
kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3], |
|
in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192], |
|
out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320], |
|
depthwise_padding: List[int] = [], |
|
strides: List[int] = [1, 2, 2, 2, 1, 2, 1], |
|
num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1], |
|
expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6], |
|
squeeze_expansion_ratio: float = 0.25, |
|
hidden_act: str = "swish", |
|
hidden_dim: int = 2560, |
|
pooling_type: str = "mean", |
|
initializer_range: float = 0.02, |
|
batch_norm_eps: float = 0.001, |
|
batch_norm_momentum: float = 0.99, |
|
drop_connect_rate: float = 0.2, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.num_channels = num_channels |
|
self.image_size = image_size |
|
self.width_coefficient = width_coefficient |
|
self.depth_coefficient = depth_coefficient |
|
self.depth_divisor = depth_divisor |
|
self.kernel_sizes = kernel_sizes |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.depthwise_padding = depthwise_padding |
|
self.strides = strides |
|
self.num_block_repeats = num_block_repeats |
|
self.expand_ratios = expand_ratios |
|
self.squeeze_expansion_ratio = squeeze_expansion_ratio |
|
self.hidden_act = hidden_act |
|
self.hidden_dim = hidden_dim |
|
self.pooling_type = pooling_type |
|
self.initializer_range = initializer_range |
|
self.batch_norm_eps = batch_norm_eps |
|
self.batch_norm_momentum = batch_norm_momentum |
|
self.drop_connect_rate = drop_connect_rate |
|
self.num_hidden_layers = sum(num_block_repeats) * 4 |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "align": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class AlignConfig(PretrainedConfig): |
|
r""" |
|
[`AlignConfig`] is the configuration class to store the configuration of a [`AlignModel`]. It is used to |
|
instantiate a ALIGN model according to the specified arguments, defining the text model and vision model configs. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the ALIGN |
|
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`AlignTextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`AlignVisionConfig`]. |
|
projection_dim (`int`, *optional*, defaults to 640): |
|
Dimentionality of text and vision projection layers. |
|
temperature_init_value (`float`, *optional*, defaults to 1.0): |
|
The inital value of the *temperature* paramter. Default is used as per the original ALIGN implementation. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AlignConfig, AlignModel |
|
|
|
>>> # Initializing a AlignConfig with kakaobrain/align-base style configuration |
|
>>> configuration = AlignConfig() |
|
|
|
>>> # Initializing a AlignModel (with random weights) from the kakaobrain/align-base style configuration |
|
>>> model = AlignModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
|
|
>>> # We can also initialize a AlignConfig from a AlignTextConfig and a AlignVisionConfig |
|
>>> from transformers import AlignTextConfig, AlignVisionConfig |
|
|
|
>>> # Initializing ALIGN Text and Vision configurations |
|
>>> config_text = AlignTextConfig() |
|
>>> config_vision = AlignVisionConfig() |
|
|
|
>>> config = AlignConfig.from_text_vision_configs(config_text, config_vision) |
|
```""" |
|
|
|
model_type = "align" |
|
|
|
def __init__( |
|
self, |
|
text_config=None, |
|
vision_config=None, |
|
projection_dim=640, |
|
temperature_init_value=1.0, |
|
initializer_range=0.02, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("text_config is None. Initializing the AlignTextConfig with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.") |
|
|
|
self.text_config = AlignTextConfig(**text_config) |
|
self.vision_config = AlignVisionConfig(**vision_config) |
|
|
|
self.projection_dim = projection_dim |
|
self.temperature_init_value = temperature_init_value |
|
self.initializer_range = initializer_range |
|
|
|
@classmethod |
|
def from_text_vision_configs(cls, text_config: AlignTextConfig, vision_config: AlignVisionConfig, **kwargs): |
|
r""" |
|
Instantiate a [`AlignConfig`] (or a derived class) from align text model configuration and align vision model |
|
configuration. |
|
|
|
Returns: |
|
[`AlignConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) |
|
|