|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" TF 2.0 Bart model.""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
import random |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from ...activations_tf import get_tf_activation |
|
from ...modeling_tf_outputs import ( |
|
TFBaseModelOutput, |
|
TFBaseModelOutputWithPastAndCrossAttentions, |
|
TFSeq2SeqLMOutput, |
|
TFSeq2SeqModelOutput, |
|
TFSeq2SeqSequenceClassifierOutput, |
|
) |
|
|
|
|
|
from ...modeling_tf_utils import ( |
|
TFCausalLanguageModelingLoss, |
|
TFModelInputType, |
|
TFPreTrainedModel, |
|
TFSequenceClassificationLoss, |
|
keras_serializable, |
|
unpack_inputs, |
|
) |
|
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax |
|
from ...utils import ( |
|
ContextManagers, |
|
add_code_sample_docstrings, |
|
add_end_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_bart import BartConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/bart-large" |
|
_CONFIG_FOR_DOC = "BartConfig" |
|
|
|
|
|
LARGE_NEGATIVE = -1e8 |
|
|
|
|
|
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): |
|
pad_token_id = tf.cast(pad_token_id, input_ids.dtype) |
|
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) |
|
start_tokens = tf.fill( |
|
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) |
|
) |
|
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) |
|
|
|
shifted_input_ids = tf.where( |
|
shifted_input_ids == -100, |
|
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), |
|
shifted_input_ids, |
|
) |
|
|
|
|
|
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) |
|
|
|
|
|
with tf.control_dependencies([assert_gte0]): |
|
shifted_input_ids = tf.identity(shifted_input_ids) |
|
|
|
return shifted_input_ids |
|
|
|
|
|
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz = input_ids_shape[0] |
|
tgt_len = input_ids_shape[1] |
|
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE |
|
mask_cond = tf.range(shape_list(mask)[-1]) |
|
|
|
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) |
|
|
|
if past_key_values_length > 0: |
|
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) |
|
|
|
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) |
|
|
|
|
|
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
src_len = shape_list(mask)[1] |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
one_cst = tf.constant(1.0) |
|
mask = tf.cast(mask, dtype=one_cst.dtype) |
|
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) |
|
|
|
return (one_cst - expanded_mask) * LARGE_NEGATIVE |
|
|
|
|
|
class TFBartLearnedPositionalEmbedding(tf.keras.layers.Embedding): |
|
""" |
|
This module learns positional embeddings up to a fixed maximum size. |
|
""" |
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): |
|
|
|
|
|
self.offset = 2 |
|
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) |
|
|
|
def call( |
|
self, |
|
input_shape: Optional[tf.TensorShape] = None, |
|
past_key_values_length: int = 0, |
|
position_ids: tf.Tensor | None = None, |
|
): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
if position_ids is None: |
|
seq_len = input_shape[1] |
|
position_ids = tf.range(seq_len, delta=1, name="range") |
|
position_ids += past_key_values_length |
|
|
|
offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32 |
|
return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype)) |
|
|
|
|
|
class TFBartAttention(tf.keras.layers.Layer): |
|
"""Multi-headed attention from "Attention Is All You Need""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
bias: bool = True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.embed_dim = embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout = tf.keras.layers.Dropout(dropout) |
|
self.head_dim = embed_dim // num_heads |
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_decoder = is_decoder |
|
|
|
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") |
|
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") |
|
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") |
|
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") |
|
|
|
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): |
|
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
key_value_states: tf.Tensor | None = None, |
|
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, |
|
attention_mask: tf.Tensor | None = None, |
|
layer_head_mask: tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Tuple[tf.Tensor, tf.Tensor | None]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
bsz, tgt_len, embed_dim = shape_list(hidden_states) |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scaling |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
elif is_cross_attention: |
|
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) |
|
elif past_key_value is not None: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
key_states = tf.concat([past_key_value[0], key_states], axis=2) |
|
value_states = tf.concat([past_key_value[1], value_states], axis=2) |
|
else: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) |
|
key_states = tf.reshape(key_states, proj_shape) |
|
value_states = tf.reshape(value_states, proj_shape) |
|
|
|
src_len = shape_list(key_states)[1] |
|
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) |
|
|
|
tf.debugging.assert_equal( |
|
shape_list(attn_weights), |
|
[bsz * self.num_heads, tgt_len, src_len], |
|
message=( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {shape_list(attn_weights)}" |
|
), |
|
) |
|
|
|
if attention_mask is not None: |
|
tf.debugging.assert_equal( |
|
shape_list(attention_mask), |
|
[bsz, 1, tgt_len, src_len], |
|
message=( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" |
|
f" {shape_list(attention_mask)}" |
|
), |
|
) |
|
|
|
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) |
|
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask |
|
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) |
|
|
|
attn_weights = stable_softmax(attn_weights, axis=-1) |
|
|
|
if layer_head_mask is not None: |
|
tf.debugging.assert_equal( |
|
shape_list(layer_head_mask), |
|
[self.num_heads], |
|
message=( |
|
f"Head mask for a single layer should be of size {(self.num_heads)}, but is" |
|
f" {shape_list(layer_head_mask)}" |
|
), |
|
) |
|
|
|
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( |
|
attn_weights, (bsz, self.num_heads, tgt_len, src_len) |
|
) |
|
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) |
|
|
|
attn_probs = self.dropout(attn_weights, training=training) |
|
attn_output = tf.matmul(attn_probs, value_states) |
|
|
|
tf.debugging.assert_equal( |
|
shape_list(attn_output), |
|
[bsz * self.num_heads, tgt_len, self.head_dim], |
|
message=( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {shape_list(attn_output)}" |
|
), |
|
) |
|
|
|
attn_output = tf.transpose( |
|
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) |
|
) |
|
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class TFBartEncoderLayer(tf.keras.layers.Layer): |
|
def __init__(self, config: BartConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
self.embed_dim = config.d_model |
|
self.self_attn = TFBartAttention( |
|
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" |
|
) |
|
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") |
|
self.dropout = tf.keras.layers.Dropout(config.dropout) |
|
self.activation_fn = get_tf_activation(config.activation_function) |
|
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) |
|
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") |
|
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") |
|
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
attention_mask: np.ndarray | tf.Tensor | None, |
|
layer_head_mask: tf.Tensor | None, |
|
training: Optional[bool] = False, |
|
) -> tf.Tensor: |
|
""" |
|
Args: |
|
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`tf.Tensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size |
|
`(encoder_attention_heads,)` |
|
""" |
|
residual = hidden_states |
|
hidden_states, self_attn_weights, _ = self.self_attn( |
|
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask |
|
) |
|
|
|
tf.debugging.assert_equal( |
|
shape_list(hidden_states), |
|
shape_list(residual), |
|
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", |
|
) |
|
|
|
hidden_states = self.dropout(hidden_states, training=training) |
|
hidden_states = residual + hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
residual = hidden_states |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = self.activation_dropout(hidden_states, training=training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = self.dropout(hidden_states, training=training) |
|
hidden_states = residual + hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
return hidden_states, self_attn_weights |
|
|
|
|
|
class TFBartDecoderLayer(tf.keras.layers.Layer): |
|
def __init__(self, config: BartConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
self.embed_dim = config.d_model |
|
self.self_attn = TFBartAttention( |
|
embed_dim=self.embed_dim, |
|
num_heads=config.decoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
name="self_attn", |
|
is_decoder=True, |
|
) |
|
self.dropout = tf.keras.layers.Dropout(config.dropout) |
|
self.activation_fn = get_tf_activation(config.activation_function) |
|
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) |
|
|
|
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") |
|
self.encoder_attn = TFBartAttention( |
|
self.embed_dim, |
|
config.decoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
name="encoder_attn", |
|
is_decoder=True, |
|
) |
|
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") |
|
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") |
|
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") |
|
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
encoder_hidden_states: np.ndarray | tf.Tensor | None = None, |
|
encoder_attention_mask: np.ndarray | tf.Tensor | None = None, |
|
layer_head_mask: tf.Tensor | None = None, |
|
cross_attn_layer_head_mask: tf.Tensor | None = None, |
|
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, |
|
training: Optional[bool] = False, |
|
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`tf.Tensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
encoder_hidden_states (`tf.Tensor`): |
|
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` |
|
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size |
|
`(decoder_attention_heads,)` |
|
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. |
|
`(decoder_attention_heads,)` |
|
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states |
|
""" |
|
residual = hidden_states |
|
|
|
|
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
past_key_value=self_attn_past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
) |
|
hidden_states = self.dropout(hidden_states, training=training) |
|
hidden_states = residual + hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
|
|
cross_attn_present_key_value = None |
|
cross_attn_weights = None |
|
if encoder_hidden_states is not None: |
|
residual = hidden_states |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( |
|
hidden_states=hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
) |
|
hidden_states = self.dropout(hidden_states, training=training) |
|
hidden_states = residual + hidden_states |
|
hidden_states = self.encoder_attn_layer_norm(hidden_states) |
|
|
|
|
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = self.activation_dropout(hidden_states, training=training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = self.dropout(hidden_states, training=training) |
|
hidden_states = residual + hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
return ( |
|
hidden_states, |
|
self_attn_weights, |
|
cross_attn_weights, |
|
present_key_value, |
|
) |
|
|
|
|
|
class TFBartClassificationHead(tf.keras.layers.Layer): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, inner_dim: int, num_classes: int, pooler_dropout: float, name: str, **kwargs): |
|
super().__init__(name=name, **kwargs) |
|
self.dense = tf.keras.layers.Dense(inner_dim, name="dense") |
|
self.dropout = tf.keras.layers.Dropout(pooler_dropout) |
|
self.out_proj = tf.keras.layers.Dense(num_classes, name="out_proj") |
|
|
|
def call(self, inputs): |
|
hidden_states = self.dropout(inputs) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = tf.keras.activations.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.out_proj(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class TFBartPretrainedModel(TFPreTrainedModel): |
|
config_class = BartConfig |
|
base_model_prefix = "model" |
|
|
|
@property |
|
def dummy_inputs(self): |
|
dummy_inputs = super().dummy_inputs |
|
|
|
|
|
dummy_inputs["input_ids"] = dummy_inputs["input_ids"] * 2 |
|
if "decoder_input_ids" in dummy_inputs: |
|
dummy_inputs["decoder_input_ids"] = dummy_inputs["decoder_input_ids"] * 2 |
|
return dummy_inputs |
|
|
|
|
|
BART_START_DOCSTRING = r""" |
|
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it |
|
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and |
|
behavior. |
|
|
|
<Tip> |
|
|
|
TensorFlow models and layers in `transformers` accept two formats as input: |
|
|
|
- having all inputs as keyword arguments (like PyTorch models), or |
|
- having all inputs as a list, tuple or dict in the first positional argument. |
|
|
|
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models |
|
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just |
|
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second |
|
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with |
|
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first |
|
positional argument: |
|
|
|
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)` |
|
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: |
|
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` |
|
- a dictionary with one or several input Tensors associated to the input names given in the docstring: |
|
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` |
|
|
|
Note that when creating models and layers with |
|
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry |
|
about any of this, as you can just pass inputs like you would to any other Python function! |
|
|
|
</Tip> |
|
|
|
Args: |
|
config ([`BartConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
BART_GENERATION_EXAMPLE = r""" |
|
Summarization example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration |
|
|
|
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") |
|
|
|
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." |
|
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf") |
|
|
|
>>> # Generate Summary |
|
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5) |
|
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) |
|
``` |
|
|
|
Mask filling example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") |
|
>>> TXT = "My friends are <mask> but they eat too many carbs." |
|
|
|
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large") |
|
>>> input_ids = tokenizer([TXT], return_tensors="tf")["input_ids"] |
|
>>> logits = model(input_ids).logits |
|
>>> probs = tf.nn.softmax(logits[0]) |
|
>>> # probs[5] is associated with the mask token |
|
``` |
|
""" |
|
|
|
|
|
BART_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`tf.Tensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`tf.Tensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Indices of decoder input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are decoder input IDs?](../glossary#decoder-input-ids) |
|
|
|
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` |
|
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). |
|
|
|
For translation and summarization training, `decoder_input_ids` should be provided. If no |
|
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right |
|
for denoising pre-training following the paper. |
|
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. |
|
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the |
|
range `[0, config.max_position_embeddings - 1]`. |
|
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
encoder_outputs (`tf.FloatTensor`, *optional*): |
|
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. |
|
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of |
|
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) |
|
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). Set to `False` during training, `True` during generation |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the |
|
config will be used instead. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be |
|
used instead. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in |
|
eager mode, in graph mode the value will always be set to True. |
|
training (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use the model in training mode (some modules like dropout modules have different |
|
behaviors between training and evaluation). |
|
""" |
|
|
|
|
|
@keras_serializable |
|
class TFBartEncoder(tf.keras.layers.Layer): |
|
config_class = BartConfig |
|
""" |
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a |
|
[`TFBartEncoderLayer`]. |
|
|
|
Args: |
|
config: BartConfig |
|
""" |
|
|
|
def __init__(self, config: BartConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs): |
|
super().__init__(**kwargs) |
|
self.config = config |
|
self.dropout = tf.keras.layers.Dropout(config.dropout) |
|
self.layerdrop = config.encoder_layerdrop |
|
self.padding_idx = config.pad_token_id |
|
self.max_source_positions = config.max_position_embeddings |
|
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 |
|
|
|
self.embed_tokens = embed_tokens |
|
self.embed_positions = TFBartLearnedPositionalEmbedding( |
|
config.max_position_embeddings, |
|
config.d_model, |
|
name="embed_positions", |
|
) |
|
self.layers = [TFBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] |
|
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") |
|
|
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: |
|
""" |
|
Args: |
|
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = shape_list(input_ids) |
|
elif inputs_embeds is not None: |
|
input_shape = shape_list(inputs_embeds)[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
|
|
|
|
|
|
|
|
context = [] |
|
if hasattr(self.embed_tokens, "load_weight_prefix"): |
|
context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) |
|
with ContextManagers(context): |
|
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) |
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale |
|
|
|
embed_pos = self.embed_positions(input_shape) |
|
hidden_states = inputs_embeds + embed_pos |
|
hidden_states = self.layernorm_embedding(hidden_states) |
|
hidden_states = self.dropout(hidden_states, training=training) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = _expand_mask(attention_mask) |
|
else: |
|
attention_mask = None |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
|
|
if head_mask is not None: |
|
tf.debugging.assert_equal( |
|
shape_list(head_mask)[0], |
|
len(self.layers), |
|
message=( |
|
f"The head_mask should be specified for {len(self.layers)} layers, but it is for" |
|
f" {shape_list(head_mask)[0]}." |
|
), |
|
) |
|
|
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
dropout_probability = random.uniform(0, 1) |
|
if training and (dropout_probability < self.layerdrop): |
|
continue |
|
|
|
hidden_states, attn = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
head_mask[idx] if head_mask is not None else None, |
|
) |
|
|
|
if output_attentions: |
|
all_attentions += (attn,) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return TFBaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
@keras_serializable |
|
class TFBartDecoder(tf.keras.layers.Layer): |
|
config_class = BartConfig |
|
""" |
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBartDecoderLayer`] |
|
|
|
Args: |
|
config: BartConfig |
|
embed_tokens: output embedding |
|
""" |
|
|
|
def __init__(self, config: BartConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs): |
|
super().__init__(**kwargs) |
|
self.config = config |
|
self.padding_idx = config.pad_token_id |
|
self.embed_tokens = embed_tokens |
|
self.layerdrop = config.decoder_layerdrop |
|
self.embed_positions = TFBartLearnedPositionalEmbedding( |
|
config.max_position_embeddings, |
|
config.d_model, |
|
name="embed_positions", |
|
) |
|
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 |
|
self.layers = [TFBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] |
|
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") |
|
|
|
self.dropout = tf.keras.layers.Dropout(config.dropout) |
|
|
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
encoder_hidden_states: np.ndarray | tf.Tensor | None = None, |
|
encoder_attention_mask: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, |
|
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: |
|
r""" |
|
Args: |
|
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the |
|
range `[0, config.max_position_embeddings - 1]`. |
|
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention |
|
of the decoder. |
|
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): |
|
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values |
|
selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up |
|
decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those |
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of |
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape |
|
`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` |
|
you can choose to directly pass an embedded representation. This is useful if you want more control |
|
over how to convert `input_ids` indices into associated vectors than the model's internal embedding |
|
lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = shape_list(input_ids) |
|
elif inputs_embeds is not None: |
|
input_shape = shape_list(inputs_embeds)[:-1] |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 |
|
|
|
|
|
if position_ids is None: |
|
positions = self.embed_positions(input_shape, past_key_values_length) |
|
else: |
|
positions = self.embed_positions(input_shape, position_ids=position_ids) |
|
|
|
if inputs_embeds is None: |
|
|
|
|
|
|
|
|
|
context = [] |
|
if hasattr(self.embed_tokens, "load_weight_prefix"): |
|
context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) |
|
with ContextManagers(context): |
|
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) |
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) |
|
else: |
|
combined_attention_mask = _expand_mask( |
|
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] |
|
) |
|
|
|
if attention_mask is not None: |
|
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) |
|
|
|
if encoder_hidden_states is not None and encoder_attention_mask is not None: |
|
|
|
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) |
|
|
|
hidden_states = self.layernorm_embedding(hidden_states + positions) |
|
hidden_states = self.dropout(hidden_states, training=training) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None |
|
present_key_values = () if use_cache else None |
|
|
|
|
|
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: |
|
if attn_mask is not None: |
|
tf.debugging.assert_equal( |
|
shape_list(attn_mask)[0], |
|
len(self.layers), |
|
message=( |
|
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" |
|
f" {shape_list(attn_mask)[0]}." |
|
), |
|
) |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
dropout_probability = random.uniform(0, 1) |
|
|
|
if training and (dropout_probability < self.layerdrop): |
|
continue |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( |
|
hidden_states, |
|
attention_mask=combined_attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
layer_head_mask=head_mask[idx] if head_mask is not None else None, |
|
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, |
|
past_key_value=past_key_value, |
|
) |
|
|
|
if use_cache: |
|
present_key_values += (present_key_value,) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_self_attn,) |
|
|
|
if encoder_hidden_states is not None: |
|
all_cross_attns += (layer_cross_attn,) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns |
|
else: |
|
return TFBaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
cross_attentions=all_cross_attns, |
|
) |
|
|
|
|
|
@keras_serializable |
|
class TFBartMainLayer(tf.keras.layers.Layer): |
|
config_class = BartConfig |
|
|
|
def __init__(self, config: BartConfig, load_weight_prefix=None, **kwargs): |
|
super().__init__(**kwargs) |
|
self.config = config |
|
self.shared = tf.keras.layers.Embedding( |
|
input_dim=config.vocab_size, |
|
output_dim=config.d_model, |
|
embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std), |
|
name="model.shared", |
|
) |
|
|
|
self.shared.load_weight_prefix = "model.shared" if load_weight_prefix is None else load_weight_prefix |
|
|
|
self.encoder = TFBartEncoder(config, self.shared, name="encoder") |
|
self.decoder = TFBartDecoder(config, self.shared, name="decoder") |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.embed_tokens = self.shared |
|
self.decoder.embed_tokens = self.shared |
|
|
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_input_ids: np.ndarray | tf.Tensor | None = None, |
|
decoder_attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_head_mask: np.ndarray | tf.Tensor | None = None, |
|
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, |
|
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, |
|
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = False, |
|
**kwargs, |
|
) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]: |
|
|
|
|
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
if input_ids is None: |
|
raise ValueError( |
|
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " |
|
"passed, `input_ids` cannot be `None`. Please pass either " |
|
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." |
|
) |
|
|
|
decoder_input_ids = shift_tokens_right( |
|
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id |
|
) |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): |
|
encoder_outputs = TFBaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
elif not return_dict and not isinstance(encoder_outputs, tuple): |
|
encoder_outputs = encoder_outputs.to_tuple() |
|
|
|
decoder_outputs = self.decoder( |
|
decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
position_ids=decoder_position_ids, |
|
encoder_hidden_states=encoder_outputs[0], |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return TFSeq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare BART Model outputting raw hidden-states without any specific head on top.", |
|
BART_START_DOCSTRING, |
|
) |
|
class TFBartModel(TFBartPretrainedModel): |
|
_requires_load_weight_prefix = True |
|
|
|
def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") |
|
|
|
def get_encoder(self): |
|
return self.model.encoder |
|
|
|
def get_decoder(self): |
|
return self.model.decoder |
|
|
|
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TFSeq2SeqModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_input_ids: np.ndarray | tf.Tensor | None = None, |
|
decoder_attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_head_mask: np.ndarray | tf.Tensor | None = None, |
|
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, |
|
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, |
|
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = False, |
|
**kwargs, |
|
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: |
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
decoder_position_ids=decoder_position_ids, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
encoder_outputs=encoder_outputs, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
return outputs |
|
|
|
def serving_output(self, output): |
|
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None |
|
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None |
|
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None |
|
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None |
|
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None |
|
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None |
|
|
|
return TFSeq2SeqModelOutput( |
|
last_hidden_state=output.last_hidden_state, |
|
past_key_values=pkv, |
|
decoder_hidden_states=dec_hs, |
|
decoder_attentions=dec_attns, |
|
cross_attentions=cross_attns, |
|
encoder_last_hidden_state=output.encoder_last_hidden_state, |
|
encoder_hidden_states=enc_hs, |
|
encoder_attentions=enc_attns, |
|
) |
|
|
|
|
|
class BiasLayer(tf.keras.layers.Layer): |
|
""" |
|
Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis, |
|
so all weights have to be registered in a layer. |
|
""" |
|
|
|
def __init__(self, shape, initializer, trainable, name, **kwargs): |
|
super().__init__(name=name, **kwargs) |
|
|
|
|
|
|
|
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) |
|
|
|
def call(self, x): |
|
return x + self.bias |
|
|
|
|
|
@add_start_docstrings( |
|
"The BART Model with a language modeling head. Can be used for summarization.", |
|
BART_START_DOCSTRING, |
|
) |
|
class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageModelingLoss): |
|
_keys_to_ignore_on_load_missing = [r"final_logits_bias"] |
|
_requires_load_weight_prefix = True |
|
|
|
def __init__(self, config, load_weight_prefix=None, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") |
|
self.use_cache = config.use_cache |
|
|
|
self.bias_layer = BiasLayer( |
|
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False |
|
) |
|
|
|
def get_decoder(self): |
|
return self.model.decoder |
|
|
|
def get_encoder(self): |
|
return self.model.encoder |
|
|
|
def get_output_embeddings(self): |
|
return self.get_input_embeddings() |
|
|
|
def set_output_embeddings(self, value): |
|
self.set_input_embeddings(value) |
|
|
|
def get_bias(self): |
|
return {"final_logits_bias": self.bias_layer.bias} |
|
|
|
def set_bias(self, value): |
|
|
|
vocab_size = value["final_logits_bias"].shape[-1] |
|
self.bias_layer = BiasLayer( |
|
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False |
|
) |
|
self.bias_layer.bias.assign(value["final_logits_bias"]) |
|
|
|
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) |
|
@add_end_docstrings(BART_GENERATION_EXAMPLE) |
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_input_ids: np.ndarray | tf.Tensor | None = None, |
|
decoder_attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_head_mask: np.ndarray | tf.Tensor | None = None, |
|
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, |
|
encoder_outputs: Optional[TFBaseModelOutput] = None, |
|
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
""" |
|
|
|
if labels is not None: |
|
labels = tf.where( |
|
labels == self.config.pad_token_id, |
|
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), |
|
labels, |
|
) |
|
use_cache = False |
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
decoder_input_ids = shift_tokens_right( |
|
labels, self.config.pad_token_id, self.config.decoder_start_token_id |
|
) |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
encoder_outputs=encoder_outputs, |
|
decoder_attention_mask=decoder_attention_mask, |
|
decoder_position_ids=decoder_position_ids, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) |
|
lm_logits = self.bias_layer(lm_logits) |
|
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
return TFSeq2SeqLMOutput( |
|
loss=masked_lm_loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
decoder_hidden_states=outputs.decoder_hidden_states, |
|
decoder_attentions=outputs.decoder_attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, |
|
encoder_hidden_states=outputs.encoder_hidden_states, |
|
encoder_attentions=outputs.encoder_attentions, |
|
) |
|
|
|
def serving_output(self, output): |
|
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None |
|
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None |
|
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None |
|
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None |
|
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None |
|
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None |
|
|
|
return TFSeq2SeqLMOutput( |
|
logits=output.logits, |
|
past_key_values=pkv, |
|
decoder_hidden_states=dec_hs, |
|
decoder_attentions=dec_attns, |
|
cross_attentions=cross_attns, |
|
encoder_last_hidden_state=output.encoder_last_hidden_state, |
|
encoder_hidden_states=enc_hs, |
|
encoder_attentions=enc_attns, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
decoder_input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs, |
|
): |
|
|
|
if past_key_values is not None: |
|
decoder_input_ids = decoder_input_ids[:, -1:] |
|
|
|
if decoder_attention_mask is not None: |
|
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] |
|
elif past_key_values is not None: |
|
decoder_position_ids = past_key_values[0][0].shape[2] |
|
else: |
|
decoder_position_ids = tf.range(decoder_input_ids.shape[1]) |
|
|
|
return { |
|
"input_ids": None, |
|
"encoder_outputs": encoder_outputs, |
|
"past_key_values": past_key_values, |
|
"decoder_input_ids": decoder_input_ids, |
|
"attention_mask": attention_mask, |
|
"decoder_attention_mask": decoder_attention_mask, |
|
"decoder_position_ids": decoder_position_ids, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): |
|
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE |
|
tasks. |
|
""", |
|
BART_START_DOCSTRING, |
|
) |
|
class TFBartForSequenceClassification(TFBartPretrainedModel, TFSequenceClassificationLoss): |
|
def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") |
|
self.classification_head = TFBartClassificationHead( |
|
config.d_model, config.num_labels, config.classifier_dropout, name="classification_head" |
|
) |
|
|
|
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFSeq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_input_ids: np.ndarray | tf.Tensor | None = None, |
|
decoder_attention_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
decoder_head_mask: np.ndarray | tf.Tensor | None = None, |
|
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, |
|
encoder_outputs: Optional[TFBaseModelOutput] = None, |
|
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFSeq2SeqSequenceClassifierOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
if input_ids is None and inputs_embeds is not None: |
|
raise NotImplementedError( |
|
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" |
|
) |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
decoder_position_ids=decoder_position_ids, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
encoder_outputs=encoder_outputs, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
last_hidden_state = outputs[0] |
|
eos_mask = tf.equal(input_ids, self.config.eos_token_id) |
|
|
|
|
|
self_masked = tf.reshape(tf.boolean_mask(eos_mask, eos_mask), (tf.shape(input_ids)[0], -1)) |
|
tf.Assert(tf.reduce_all(self_masked[:, -1]), ["All examples must have the same number of <eos> tokens."]) |
|
|
|
masked = tf.reshape( |
|
tf.boolean_mask(last_hidden_state, eos_mask), |
|
(tf.shape(input_ids)[0], tf.shape(self_masked)[1], tf.shape(last_hidden_state)[-1]), |
|
) |
|
|
|
sentence_representation = masked[:, -1, :] |
|
logits = self.classification_head(sentence_representation) |
|
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFSeq2SeqSequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
decoder_hidden_states=outputs.decoder_hidden_states, |
|
decoder_attentions=outputs.decoder_attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, |
|
encoder_hidden_states=outputs.encoder_hidden_states, |
|
encoder_attentions=outputs.encoder_attentions, |
|
) |
|
|
|
def serving_output(self, output): |
|
logits = tf.convert_to_tensor(output.logits) |
|
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None |
|
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None |
|
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None |
|
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None |
|
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None |
|
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None |
|
|
|
return TFSeq2SeqSequenceClassifierOutput( |
|
logits=logits, |
|
past_key_values=pkv, |
|
decoder_hidden_states=dec_hs, |
|
decoder_attentions=dec_attns, |
|
cross_attentions=cross_attns, |
|
encoder_last_hidden_state=output.encoder_last_hidden_state, |
|
encoder_hidden_states=enc_hs, |
|
encoder_attentions=enc_attns, |
|
) |
|
|