|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch BLIP model.""" |
|
|
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn.functional import normalize |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling |
|
from ...modeling_utils import PreTrainedModel |
|
from ...utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig |
|
from .modeling_blip_text import BlipTextLMHeadModel, BlipTextModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base" |
|
|
|
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"Salesforce/blip-vqa-base", |
|
"Salesforce/blip-vqa-capfilt-large", |
|
"Salesforce/blip-image-captioning-base", |
|
"Salesforce/blip-image-captioning-large", |
|
"Salesforce/blip-itm-base-coco", |
|
"Salesforce/blip-itm-large-coco", |
|
"Salesforce/blip-itm-base-flickr", |
|
"Salesforce/blip-itm-large-flickr", |
|
|
|
] |
|
|
|
|
|
|
|
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: |
|
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) |
|
|
|
|
|
|
|
def blip_loss(similarity: torch.Tensor) -> torch.Tensor: |
|
caption_loss = contrastive_loss(similarity) |
|
image_loss = contrastive_loss(similarity.t()) |
|
return (caption_loss + image_loss) / 2.0 |
|
|
|
|
|
@dataclass |
|
class BlipForConditionalGenerationModelOutput(ModelOutput): |
|
""" |
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the |
|
last hidden states. This class also adds the loss term from the text decoder. |
|
|
|
Args: |
|
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
Languge modeling loss from the text decoder. |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*): |
|
Prediction scores of the language modeling head of the text decoder model. |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*): |
|
The image embeddings obtained after applying the Vision Transformer model to the input image. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[Tuple[torch.FloatTensor]] = None |
|
logits: Optional[Tuple[torch.FloatTensor]] = None |
|
image_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
@property |
|
def decoder_logits(self): |
|
warnings.warn( |
|
"`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers." |
|
" Please use the `logits` attribute to retrieve the final output instead.", |
|
FutureWarning, |
|
) |
|
return self.logits |
|
|
|
|
|
@dataclass |
|
class BlipTextVisionModelOutput(ModelOutput): |
|
""" |
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the |
|
last hidden states. This class also adds the loss term from the text decoder. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Languge modeling loss from the text decoder. |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
image_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class BlipImageTextMatchingModelOutput(ModelOutput): |
|
""" |
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the |
|
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity |
|
scores. |
|
|
|
Args: |
|
itm_score (`torch.FloatTensor`): |
|
The image-text similarity scores. |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Languge modeling loss from the text decoder. |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*): |
|
Last layer hidden-state of the vision of the vision-only branch of the model. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
question_embeds (`torch.FloatTensor`): |
|
The question embeddings obtained by the text projection layer. |
|
""" |
|
|
|
itm_score: Optional[torch.FloatTensor] = None |
|
loss: Optional[torch.FloatTensor] = None |
|
image_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
vision_pooler_output: Optional[torch.FloatTensor] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
question_embeds: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class BlipOutput(ModelOutput): |
|
""" |
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): |
|
Contrastive loss for image-text similarity. |
|
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): |
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text |
|
similarity scores. |
|
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): |
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image |
|
similarity scores. |
|
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. |
|
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. |
|
text_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`BlipTextModel`]. |
|
vision_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`BlipVisionModel`]. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits_per_image: torch.FloatTensor = None |
|
logits_per_text: torch.FloatTensor = None |
|
text_embeds: torch.FloatTensor = None |
|
image_embeds: torch.FloatTensor = None |
|
text_model_output: BaseModelOutputWithPooling = None |
|
vision_model_output: BaseModelOutputWithPooling = None |
|
|
|
def to_tuple(self) -> Tuple[Any]: |
|
return tuple( |
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() |
|
for k in self.keys() |
|
) |
|
|
|
|
|
class BlipVisionEmbeddings(nn.Module): |
|
def __init__(self, config: BlipVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
batch_size = pixel_values.shape[0] |
|
target_dtype = self.patch_embedding.weight.dtype |
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) |
|
return embeddings |
|
|
|
|
|
|
|
class BlipTextEmbeddings(nn.Module): |
|
def __init__(self, config: BlipTextConfig): |
|
super().__init__() |
|
embed_dim = config.hidden_size |
|
|
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) |
|
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) |
|
|
|
|
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
) -> torch.Tensor: |
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, :seq_length] |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.token_embedding(input_ids) |
|
|
|
position_embeddings = self.position_embedding(position_ids) |
|
embeddings = inputs_embeds + position_embeddings |
|
|
|
return embeddings |
|
|
|
|
|
class BlipAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = nn.Dropout(config.attention_dropout) |
|
|
|
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim) |
|
|
|
self.projection = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
|
|
mixed_qkv = ( |
|
self.qkv(hidden_states) |
|
.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] |
|
|
|
|
|
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores * self.scale |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) |
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) |
|
context_layer = context_layer.reshape(new_context_layer_shape) |
|
|
|
output = self.projection(context_layer) |
|
|
|
outputs = (output, attention_probs) if output_attentions else (output, None) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class BlipMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BlipEncoderLayer(nn.Module): |
|
def __init__(self, config: BlipConfig): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.self_attn = BlipAttention(config) |
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.mlp = BlipMLP(config) |
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
`(config.encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states, attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
head_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = hidden_states + residual |
|
residual = hidden_states |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = hidden_states + residual |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class BlipPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BlipConfig |
|
base_model_prefix = "blip" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_range |
|
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=factor) |
|
if hasattr(module, "bias") and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
if isinstance(module, BlipVisionEmbeddings): |
|
if hasattr(self.config, "vision_config"): |
|
factor = self.config.vision_config.initializer_range |
|
nn.init.trunc_normal_( |
|
module.position_embedding, |
|
mean=0.0, |
|
std=factor, |
|
) |
|
|
|
nn.init.trunc_normal_( |
|
module.class_embedding, |
|
mean=0.0, |
|
std=factor, |
|
) |
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BlipEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
BLIP_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`BlipConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
BLIP_TEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
BLIP_VISION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
BLIP_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. |
|
return_loss (`bool`, *optional*): |
|
Whether or not to return the contrastive loss. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class BlipEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`BlipEncoderLayer`]. |
|
|
|
Args: |
|
config (`BlipConfig`): |
|
The corresponding vision configuration for the `BlipEncoder`. |
|
""" |
|
|
|
def __init__(self, config: BlipConfig): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Embedded representation of the inputs. Should be float, not int tokens. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
hidden_states = inputs_embeds |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class BlipVisionModel(BlipPreTrainedModel): |
|
main_input_name = "pixel_values" |
|
config_class = BlipVisionConfig |
|
|
|
def __init__(self, config: BlipVisionConfig): |
|
super().__init__(config) |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
|
|
self.embeddings = BlipVisionEmbeddings(config) |
|
self.encoder = BlipEncoder(config) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
pooled_output = last_hidden_state[:, 0, :] |
|
pooled_output = self.post_layernorm(pooled_output) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
|
|
@add_start_docstrings(BLIP_START_DOCSTRING) |
|
class BlipModel(BlipPreTrainedModel): |
|
config_class = BlipConfig |
|
|
|
def __init__(self, config: BlipConfig): |
|
super().__init__(config) |
|
|
|
if not isinstance(config.text_config, BlipTextConfig): |
|
raise ValueError( |
|
"config.text_config is expected to be of type BlipTextConfig but is of type" |
|
f" {type(config.text_config)}." |
|
) |
|
|
|
if not isinstance(config.vision_config, BlipVisionConfig): |
|
raise ValueError( |
|
"config.vision_config is expected to be of type BlipVisionConfig but is of type" |
|
f" {type(config.vision_config)}." |
|
) |
|
|
|
text_config = config.text_config |
|
vision_config = config.vision_config |
|
|
|
self.projection_dim = config.projection_dim |
|
self.text_embed_dim = text_config.hidden_size |
|
self.vision_embed_dim = vision_config.hidden_size |
|
|
|
self.text_model = BlipTextModel(text_config) |
|
self.vision_model = BlipVisionModel(vision_config) |
|
|
|
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) |
|
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) |
|
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) |
|
def get_text_features( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Returns: |
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by |
|
applying the projection layer to the pooled output of [`BlipTextModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoProcessor, BlipModel |
|
|
|
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") |
|
>>> text_features = model.get_text_features(**inputs) |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = text_outputs[1] |
|
text_features = self.text_projection(pooled_output) |
|
|
|
return text_features |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
def get_image_features( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Returns: |
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by |
|
applying the projection layer to the pooled output of [`BlipVisionModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, BlipModel |
|
|
|
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> image_features = model.get_image_features(**inputs) |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model(pixel_values=pixel_values, return_dict=return_dict) |
|
|
|
pooled_output = vision_outputs[1] |
|
image_features = self.visual_projection(pooled_output) |
|
|
|
return image_features |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
return_loss: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BlipOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, BlipModel |
|
|
|
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor( |
|
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True |
|
... ) |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score |
|
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = vision_outputs[1] |
|
image_embeds = self.visual_projection(image_embeds) |
|
|
|
text_embeds = text_outputs[1] |
|
text_embeds = self.text_projection(text_embeds) |
|
|
|
|
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) |
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale |
|
logits_per_image = logits_per_text.t() |
|
|
|
loss = None |
|
if return_loss: |
|
loss = blip_loss(logits_per_text) |
|
|
|
if not return_dict: |
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return BlipOutput( |
|
loss=loss, |
|
logits_per_image=logits_per_image, |
|
logits_per_text=logits_per_text, |
|
text_embeds=text_embeds, |
|
image_embeds=image_embeds, |
|
text_model_output=text_outputs, |
|
vision_model_output=vision_outputs, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass |
|
`input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise, |
|
the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption |
|
from the text input. If no text input is provided, the decoder will start with the [BOS] token only. |
|
""", |
|
BLIP_START_DOCSTRING, |
|
) |
|
class BlipForConditionalGeneration(BlipPreTrainedModel): |
|
config_class = BlipConfig |
|
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"] |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config: BlipConfig): |
|
super().__init__(config) |
|
|
|
self.vision_model = BlipVisionModel(config.vision_config) |
|
|
|
self.text_decoder = BlipTextLMHeadModel(config.text_config) |
|
|
|
self.decoder_input_ids = config.text_config.bos_token_id |
|
self.decoder_pad_token_id = config.text_config.pad_token_id |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BlipForConditionalGenerationModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, BlipForConditionalGeneration |
|
|
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> text = "A picture of" |
|
|
|
>>> inputs = processor(images=image, text=text, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
```""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = vision_outputs[0] |
|
|
|
outputs = self.text_decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
labels=labels, |
|
return_dict=return_dict, |
|
reduction="mean", |
|
) |
|
|
|
if not return_dict: |
|
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return BlipForConditionalGenerationModelOutput( |
|
loss=outputs.loss, |
|
logits=outputs.logits, |
|
image_embeds=image_embeds, |
|
last_hidden_state=vision_outputs.last_hidden_state, |
|
hidden_states=vision_outputs.hidden_states, |
|
attentions=vision_outputs.attentions, |
|
) |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
r""" |
|
Overrides *generate* function to be able to use the model as a conditional generator |
|
|
|
Parameters: |
|
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*: |
|
Input image to be processed |
|
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): |
|
The sequence used as a prompt for the generation. |
|
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
|
|
Examples: |
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, BlipForConditionalGeneration |
|
|
|
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> outputs = model.generate(**inputs) |
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True)) |
|
two cats sleeping on a couch |
|
``` |
|
""" |
|
|
|
batch_size = pixel_values.shape[0] |
|
vision_outputs = self.vision_model(pixel_values=pixel_values) |
|
|
|
image_embeds = vision_outputs[0] |
|
|
|
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) |
|
|
|
if isinstance(input_ids, list): |
|
input_ids = torch.LongTensor(input_ids) |
|
elif input_ids is None: |
|
input_ids = ( |
|
torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]]) |
|
.repeat(batch_size, 1) |
|
.to(image_embeds.device) |
|
) |
|
|
|
input_ids[:, 0] = self.config.text_config.bos_token_id |
|
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None |
|
|
|
outputs = self.text_decoder.generate( |
|
input_ids=input_ids[:, :-1], |
|
eos_token_id=self.config.text_config.sep_token_id, |
|
pad_token_id=self.config.text_config.pad_token_id, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_attention_mask, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text |
|
decoder. The vision encoder will encode the input image, the text encoder will encode the input question together |
|
with the encoding of the image, and the text decoder will output the answer to the question. |
|
""", |
|
BLIP_START_DOCSTRING, |
|
) |
|
class BlipForQuestionAnswering(BlipPreTrainedModel): |
|
config_class = BlipConfig |
|
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"] |
|
|
|
def __init__(self, config: BlipConfig): |
|
super().__init__(config) |
|
|
|
self.vision_model = BlipVisionModel(config.vision_config) |
|
|
|
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) |
|
|
|
self.text_decoder = BlipTextLMHeadModel(config.text_config) |
|
|
|
self.decoder_pad_token_id = config.text_config.pad_token_id |
|
self.decoder_start_token_id = config.text_config.bos_token_id |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
pixel_values: torch.FloatTensor, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BlipTextVisionModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, BlipForQuestionAnswering |
|
|
|
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> # training |
|
>>> text = "How many cats are in the picture?" |
|
>>> label = "2" |
|
>>> inputs = processor(images=image, text=text, return_tensors="pt") |
|
>>> labels = processor(text=label, return_tensors="pt").input_ids |
|
|
|
>>> inputs["labels"] = labels |
|
>>> outputs = model(**inputs) |
|
>>> loss = outputs.loss |
|
>>> loss.backward() |
|
|
|
>>> # inference |
|
>>> text = "How many cats are in the picture?" |
|
>>> inputs = processor(images=image, text=text, return_tensors="pt") |
|
>>> outputs = model.generate(**inputs) |
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True)) |
|
2 |
|
```""" |
|
if labels is None and decoder_input_ids is None: |
|
raise ValueError( |
|
"Either `decoder_input_ids` or `labels` should be passed when calling `forward` with" |
|
" `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you" |
|
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`" |
|
) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = vision_outputs[0] |
|
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long) |
|
|
|
question_embeds = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_attention_mask, |
|
return_dict=return_dict, |
|
) |
|
|
|
if labels is not None and decoder_input_ids is None: |
|
|
|
decoder_input_ids = labels |
|
|
|
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state |
|
|
|
answer_output = self.text_decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
encoder_hidden_states=question_embeds, |
|
encoder_attention_mask=attention_mask, |
|
labels=labels, |
|
return_dict=return_dict, |
|
reduction="mean", |
|
) |
|
|
|
if labels is not None: |
|
decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean() |
|
else: |
|
decoder_loss = None |
|
|
|
if not return_dict: |
|
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return BlipTextVisionModelOutput( |
|
loss=decoder_loss, |
|
image_embeds=image_embeds, |
|
last_hidden_state=vision_outputs.last_hidden_state, |
|
hidden_states=vision_outputs.hidden_states, |
|
attentions=vision_outputs.attentions, |
|
) |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
input_ids: torch.LongTensor, |
|
pixel_values: torch.FloatTensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
r""" |
|
Overrides *generate* function to be able to use the model as a conditional generator |
|
|
|
Parameters: |
|
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*): |
|
The sequence used as a prompt for the generation. |
|
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*: |
|
Input image to be processed |
|
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for |
|
tokens that are NOT MASKED, `0` for MASKED tokens. |
|
**generate_kwargs: |
|
Additional arguments passed to the *generate* function of the decoder |
|
|
|
|
|
Examples: |
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, BlipForQuestionAnswering |
|
|
|
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> text = "How many cats are in the picture?" |
|
|
|
>>> inputs = processor(images=image, text=text, return_tensors="pt") |
|
|
|
>>> outputs = model.generate(**inputs) |
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True)) |
|
2 |
|
``` |
|
""" |
|
vision_outputs = self.vision_model(pixel_values=pixel_values) |
|
|
|
image_embeds = vision_outputs[0] |
|
|
|
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) |
|
|
|
if isinstance(input_ids, list): |
|
input_ids = torch.LongTensor(input_ids) |
|
|
|
question_outputs = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_attention_mask, |
|
return_dict=False, |
|
) |
|
|
|
question_embeds = question_outputs[0] |
|
|
|
question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device) |
|
|
|
bos_ids = torch.full( |
|
(question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device |
|
) |
|
|
|
outputs = self.text_decoder.generate( |
|
input_ids=bos_ids, |
|
eos_token_id=self.config.text_config.sep_token_id, |
|
pad_token_id=self.config.text_config.pad_token_id, |
|
encoder_hidden_states=question_embeds, |
|
encoder_attention_mask=question_attention_mask, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of |
|
image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to |
|
the image. |
|
""", |
|
BLIP_START_DOCSTRING, |
|
) |
|
class BlipForImageTextRetrieval(BlipPreTrainedModel): |
|
config_class = BlipConfig |
|
|
|
def __init__(self, config: BlipConfig): |
|
super().__init__(config) |
|
|
|
self.vision_model = BlipVisionModel(config.vision_config) |
|
|
|
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) |
|
|
|
|
|
self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size) |
|
|
|
|
|
self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size) |
|
|
|
|
|
self.itm_head = nn.Linear(config.text_config.hidden_size, 2) |
|
|
|
self.decoder_pad_token_id = ( |
|
config.text_config.pad_token_id |
|
if not hasattr(config, "decoder_pad_token_id") |
|
else config.decoder_pad_token_id |
|
) |
|
self.decoder_start_token_id = ( |
|
config.text_config.bos_token_id |
|
if not hasattr(config, "decoder_start_token_id") |
|
else config.decoder_start_token_id |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
pixel_values: torch.FloatTensor, |
|
use_itm_head: Optional[bool] = True, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BlipTextVisionModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, BlipForImageTextRetrieval |
|
|
|
>>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> text = "an image of a cat" |
|
|
|
>>> inputs = processor(images=image, text=text, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
``` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = vision_outputs[0] |
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long) |
|
|
|
if use_itm_head: |
|
question_embeds = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_atts, |
|
return_dict=return_dict, |
|
) |
|
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state |
|
|
|
output = self.itm_head(question_embeds[:, 0, :]) |
|
else: |
|
question_embeds = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
return_dict=return_dict, |
|
) |
|
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state |
|
|
|
image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) |
|
text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1) |
|
|
|
output = image_feat @ text_feat.t() |
|
|
|
if not return_dict: |
|
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,) |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return BlipImageTextMatchingModelOutput( |
|
itm_score=output, |
|
last_hidden_state=vision_outputs.last_hidden_state, |
|
hidden_states=vision_outputs.hidden_states, |
|
attentions=vision_outputs.attentions, |
|
question_embeds=question_embeds, |
|
) |
|
|