|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" TensorFlow BLIP model.""" |
|
|
|
from __future__ import annotations |
|
|
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
import tensorflow as tf |
|
|
|
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling |
|
from ...modeling_tf_utils import ( |
|
TFPreTrainedModel, |
|
get_initializer, |
|
get_tf_activation, |
|
keras_serializable, |
|
shape_list, |
|
unpack_inputs, |
|
) |
|
from ...tf_utils import check_embeddings_within_bounds, stable_softmax |
|
from ...utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig |
|
from .modeling_tf_blip_text import BLIP_TEXT_INPUTS_DOCSTRING, TFBlipTextLMHeadModel, TFBlipTextModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base" |
|
|
|
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"Salesforce/blip-vqa-base", |
|
"Salesforce/blip-vqa-capfilt-large", |
|
"Salesforce/blip-image-captioning-base", |
|
"Salesforce/blip-image-captioning-large", |
|
"Salesforce/blip-itm-base-coco", |
|
"Salesforce/blip-itm-large-coco", |
|
"Salesforce/blip-itm-base-flickr", |
|
"Salesforce/blip-itm-large-flickr", |
|
|
|
] |
|
|
|
|
|
|
|
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor: |
|
return tf.math.reduce_mean( |
|
tf.keras.metrics.sparse_categorical_crossentropy( |
|
y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True |
|
) |
|
) |
|
|
|
|
|
|
|
def blip_loss(similarity: tf.Tensor) -> tf.Tensor: |
|
caption_loss = contrastive_loss(similarity) |
|
image_loss = contrastive_loss(tf.transpose(similarity)) |
|
return (caption_loss + image_loss) / 2.0 |
|
|
|
|
|
@dataclass |
|
class TFBlipForConditionalGenerationModelOutput(ModelOutput): |
|
""" |
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the |
|
last hidden states. This class also adds the loss term from the text decoder. |
|
|
|
Args: |
|
loss (`tf.Tensor`, *optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`): |
|
Languge modeling loss from the text decoder. |
|
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*): |
|
Prediction scores of the language modeling head of the text decoder model. |
|
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)`, *optional*): |
|
The image embeddings obtained after applying the Vision Transformer model to the input image. |
|
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True`): |
|
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for |
|
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed): |
|
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads.` |
|
""" |
|
|
|
loss: Tuple[tf.Tensor] | None = None |
|
logits: Tuple[tf.Tensor] | None = None |
|
image_embeds: tf.Tensor | None = None |
|
last_hidden_state: tf.Tensor = None |
|
hidden_states: Tuple[tf.Tensor] | None = None |
|
attentions: Tuple[tf.Tensor] | None = None |
|
|
|
@property |
|
def decoder_logits(self): |
|
warnings.warn( |
|
"`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers." |
|
" Please use the `logits` attribute to retrieve the final output instead.", |
|
FutureWarning, |
|
) |
|
return self.logits |
|
|
|
|
|
@dataclass |
|
class TFBlipTextVisionModelOutput(ModelOutput): |
|
""" |
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the |
|
last hidden states. This class also adds the loss term from the text decoder. |
|
|
|
Args: |
|
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Languge modeling loss from the text decoder. |
|
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for |
|
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: tf.Tensor | None = None |
|
image_embeds: tf.Tensor | None = None |
|
last_hidden_state: tf.Tensor = None |
|
hidden_states: Tuple[tf.Tensor] | None = None |
|
attentions: Tuple[tf.Tensor] | None = None |
|
|
|
|
|
@dataclass |
|
class TFBlipImageTextMatchingModelOutput(ModelOutput): |
|
""" |
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the |
|
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity |
|
scores. |
|
|
|
Args: |
|
itm_score (`tf.Tensor`): |
|
The image-text similarity scores. |
|
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Languge modeling loss from the text decoder. |
|
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for |
|
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
vision_pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*): |
|
Last layer hidden-state of the vision of the vision-only branch of the model. |
|
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
question_embeds (`tf.Tensor`): |
|
The question embeddings obtained by the text projection layer. |
|
""" |
|
|
|
itm_score: tf.Tensor | None = None |
|
loss: tf.Tensor | None = None |
|
image_embeds: tf.Tensor | None = None |
|
last_hidden_state: tf.Tensor = None |
|
hidden_states: Tuple[tf.Tensor] | None = None |
|
vision_pooler_output: tf.Tensor | None = None |
|
attentions: Tuple[tf.Tensor] | None = None |
|
question_embeds: Tuple[tf.Tensor] | None = None |
|
|
|
|
|
@dataclass |
|
class TFBlipOutput(ModelOutput): |
|
""" |
|
Args: |
|
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): |
|
Contrastive loss for image-text similarity. |
|
logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`): |
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text |
|
similarity scores. |
|
logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`): |
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image |
|
similarity scores. |
|
text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`): |
|
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. |
|
image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`): |
|
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. |
|
text_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`BlipTextModel`]. |
|
vision_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`BlipVisionModel`]. |
|
""" |
|
|
|
loss: tf.Tensor | None = None |
|
logits_per_image: tf.Tensor = None |
|
logits_per_text: tf.Tensor = None |
|
text_embeds: tf.Tensor = None |
|
image_embeds: tf.Tensor = None |
|
text_model_output: TFBaseModelOutputWithPooling = None |
|
vision_model_output: TFBaseModelOutputWithPooling = None |
|
|
|
def to_tuple(self) -> Tuple[Any]: |
|
return tuple( |
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() |
|
for k in self.keys() |
|
) |
|
|
|
|
|
class TFBlipVisionEmbeddings(tf.keras.layers.Layer): |
|
def __init__(self, config: BlipVisionConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.patch_embedding = tf.keras.layers.Conv2D( |
|
filters=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
strides=self.patch_size, |
|
kernel_initializer=get_initializer(self.config.initializer_range), |
|
data_format="channels_last", |
|
name="patch_embedding", |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
|
|
def build(self, input_shape): |
|
self.class_embedding = self.add_weight( |
|
shape=(1, 1, self.embed_dim), |
|
initializer=get_initializer(self.config.initializer_range), |
|
trainable=True, |
|
name="class_embedding", |
|
) |
|
|
|
self.position_embedding = self.add_weight( |
|
shape=(1, self.num_positions, self.embed_dim), |
|
initializer=get_initializer(self.config.initializer_range), |
|
trainable=True, |
|
name="position_embedding", |
|
) |
|
super().build(input_shape) |
|
|
|
def call(self, pixel_values: tf.Tensor) -> tf.Tensor: |
|
|
|
|
|
batch_size = tf.shape(pixel_values)[0] |
|
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) |
|
patch_embeds = self.patch_embedding(pixel_values) |
|
patch_embeds = tf.reshape(patch_embeds, (batch_size, self.num_patches, -1)) |
|
|
|
class_embeds = tf.broadcast_to(self.class_embedding, (batch_size, 1, self.embed_dim)) |
|
embeddings = tf.concat([class_embeds, patch_embeds], axis=1) |
|
embeddings = embeddings + self.position_embedding[:, : tf.shape(embeddings)[1], :] |
|
return embeddings |
|
|
|
|
|
|
|
class TFBlipTextEmbeddings(tf.keras.layers.Layer): |
|
def __init__(self, config: BlipTextConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.embed_dim = config.hidden_size |
|
|
|
self.config = config |
|
|
|
def build(self, input_shape: tf.TensorShape = None): |
|
with tf.name_scope("token_embedding"): |
|
self.weight = self.add_weight( |
|
shape=(self.config.vocab_size, self.embed_dim), |
|
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), |
|
trainable=True, |
|
name="weight", |
|
) |
|
|
|
with tf.name_scope("position_embedding"): |
|
self.position_embedding = self.add_weight( |
|
shape=(self.config.max_position_embeddings, self.embed_dim), |
|
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range), |
|
trainable=True, |
|
name="embeddings", |
|
) |
|
|
|
super().build(input_shape) |
|
|
|
def call( |
|
self, |
|
input_ids: tf.Tensor = None, |
|
position_ids: tf.Tensor = None, |
|
inputs_embeds: tf.Tensor = None, |
|
) -> tf.Tensor: |
|
""" |
|
Applies embedding based on inputs tensor. |
|
|
|
Returns: |
|
final_embeddings (`tf.Tensor`): output embedding tensor. |
|
""" |
|
if input_ids is None and inputs_embeds is None: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
check_embeddings_within_bounds(input_ids, self.config.vocab_size) |
|
inputs_embeds = tf.gather(params=self.weight, indices=input_ids) |
|
|
|
input_shape = shape_list(inputs_embeds)[:-1] |
|
|
|
if position_ids is None: |
|
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) |
|
|
|
position_embeds = tf.gather(params=self.position_embedding, indices=position_ids) |
|
position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) |
|
final_embeddings = inputs_embeds + position_embeds |
|
|
|
return final_embeddings |
|
|
|
|
|
class TFBlipAttention(tf.keras.layers.Layer): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config, **kwargs): |
|
super().__init__(**kwargs) |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = tf.keras.layers.Dropout(config.attention_dropout, name="dropout") |
|
|
|
self.qkv = tf.keras.layers.Dense( |
|
3 * self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="qkv" |
|
) |
|
|
|
self.projection = tf.keras.layers.Dense( |
|
self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="projection" |
|
) |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
head_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = False, |
|
training: Optional[bool] = None, |
|
) -> Tuple[tf.Tensor, tf.Tensor | None, Tuple[tf.Tensor] | None]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, tgt_len, embed_dim = shape_list(hidden_states) |
|
|
|
mixed_qkv = self.qkv(hidden_states) |
|
mixed_qkv = tf.reshape(mixed_qkv, (bsz, tgt_len, 3, self.num_heads, self.head_dim)) |
|
mixed_qkv = tf.transpose(mixed_qkv, perm=(2, 0, 3, 1, 4)) |
|
|
|
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] |
|
|
|
|
|
attention_scores = query_states @ tf.transpose(key_states, (0, 1, 3, 2)) |
|
|
|
attention_scores = attention_scores * self.scale |
|
|
|
|
|
attention_probs = stable_softmax(attention_scores, axis=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs, training=training) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = tf.transpose(attention_probs @ value_states, perm=(0, 2, 1, 3)) |
|
|
|
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.embed_dim] |
|
context_layer = tf.reshape(context_layer, new_context_layer_shape) |
|
|
|
output = self.projection(context_layer) |
|
|
|
outputs = (output, attention_probs) if output_attentions else (output, None) |
|
|
|
return outputs |
|
|
|
|
|
class TFBlipMLP(tf.keras.layers.Layer): |
|
def __init__(self, config: BlipConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.activation_fn = get_tf_activation(config.hidden_act) |
|
|
|
in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) |
|
fc_std = (2 * config.hidden_size) ** -0.5 |
|
|
|
self.fc1 = tf.keras.layers.Dense( |
|
units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1" |
|
) |
|
self.fc2 = tf.keras.layers.Dense( |
|
units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2" |
|
) |
|
|
|
def call(self, hidden_states: tf.Tensor) -> tf.Tensor: |
|
hidden_states = self.fc1(inputs=hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(inputs=hidden_states) |
|
return hidden_states |
|
|
|
|
|
class TFBlipEncoderLayer(tf.keras.layers.Layer): |
|
def __init__(self, config: BlipConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
self.embed_dim = config.hidden_size |
|
self.self_attn = TFBlipAttention(config, name="self_attn") |
|
self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") |
|
self.mlp = TFBlipMLP(config, name="mlp") |
|
self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
attention_mask: tf.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
training: Optional[bool] = None, |
|
) -> Tuple[tf.Tensor]: |
|
""" |
|
Args: |
|
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`tf.Tensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
`(config.encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states, attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
head_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
training=training, |
|
) |
|
hidden_states = hidden_states + residual |
|
residual = hidden_states |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = hidden_states + residual |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class TFBlipPreTrainedModel(TFPreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BlipConfig |
|
base_model_prefix = "blip" |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
|
|
BLIP_START_DOCSTRING = r""" |
|
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it |
|
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`BlipConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
BLIP_VISION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
BLIP_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. |
|
return_loss (`bool`, *optional*): |
|
Whether or not to return the contrastive loss. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@keras_serializable |
|
class TFBlipEncoder(tf.keras.layers.Layer): |
|
config_class = BlipConfig |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`BlipEncoderLayer`]. |
|
|
|
Args: |
|
config (`BlipConfig`): |
|
The corresponding vision configuration for the `BlipEncoder`. |
|
""" |
|
|
|
def __init__(self, config: BlipConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
self.config = config |
|
self.layers = [TFBlipEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)] |
|
|
|
@unpack_inputs |
|
def call( |
|
self, |
|
inputs_embeds, |
|
attention_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = None, |
|
) -> Union[Tuple, TFBaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Embedded representation of the inputs. Should be float, not int tokens. |
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
hidden_states = inputs_embeds |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
training=training, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return TFBaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class TFBlipVisionModel(TFBlipPreTrainedModel): |
|
main_input_name = "pixel_values" |
|
config_class = BlipVisionConfig |
|
|
|
def __init__(self, config: BlipVisionConfig, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
self.config = config |
|
|
|
self.embeddings = TFBlipVisionEmbeddings(config, name="embeddings") |
|
self.encoder = TFBlipEncoder(config, name="encoder") |
|
self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm") |
|
|
|
def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling: |
|
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None |
|
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None |
|
|
|
return TFBaseModelOutputWithPooling( |
|
last_hidden_state=output.last_hidden_state, |
|
pooler_output=output.pooler_output, |
|
hidden_states=hs, |
|
attentions=attns, |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=BlipVisionConfig) |
|
def call( |
|
self, |
|
pixel_values: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = None, |
|
) -> Union[Tuple, TFBaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
pooled_output = last_hidden_state[:, 0, :] |
|
|
|
pooled_output = self.post_layernorm(tf.expand_dims(pooled_output, 1)) |
|
pooled_output = tf.squeeze(pooled_output, 1) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return TFBaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
|
|
class TFBlipMainLayer(tf.keras.layers.Layer): |
|
config_class = BlipConfig |
|
|
|
def __init__(self, config: BlipConfig, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
if not isinstance(config.text_config, BlipTextConfig): |
|
raise ValueError( |
|
"config.text_config is expected to be of type BlipTextConfig but is of type" |
|
f" {type(config.text_config)}." |
|
) |
|
|
|
if not isinstance(config.vision_config, BlipVisionConfig): |
|
raise ValueError( |
|
"config.vision_config is expected to be of type BlipVisionConfig but is of type" |
|
f" {type(config.vision_config)}." |
|
) |
|
|
|
text_config = config.text_config |
|
vision_config = config.vision_config |
|
|
|
self.projection_dim = config.projection_dim |
|
self.text_embed_dim = text_config.hidden_size |
|
self.vision_embed_dim = vision_config.hidden_size |
|
|
|
self.text_model = TFBlipTextModel(text_config, name="text_model") |
|
self.vision_model = TFBlipVisionModel(vision_config, name="vision_model") |
|
|
|
self.visual_projection = tf.keras.layers.Dense( |
|
self.projection_dim, |
|
use_bias=False, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
name="visual_projection", |
|
) |
|
self.text_projection = tf.keras.layers.Dense( |
|
self.projection_dim, |
|
use_bias=False, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
name="text_projection", |
|
) |
|
|
|
self.config = config |
|
|
|
def build(self, input_shape=None): |
|
self.logit_scale = self.add_weight( |
|
name="logit_scale", |
|
shape=[], |
|
initializer=tf.keras.initializers.Constant(self.config.logit_scale_init_value), |
|
trainable=True, |
|
) |
|
super().build(input_shape) |
|
|
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: tf.Tensor | None = None, |
|
pixel_values: tf.Tensor | None = None, |
|
attention_mask: tf.Tensor | None = None, |
|
position_ids: tf.Tensor | None = None, |
|
return_loss: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = None, |
|
) -> Union[Tuple, TFBlipOutput]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
image_embeds = vision_outputs[1] |
|
image_embeds = self.visual_projection(image_embeds) |
|
|
|
text_embeds = text_outputs[1] |
|
text_embeds = self.text_projection(text_embeds) |
|
|
|
|
|
image_embeds = image_embeds / tf.norm(image_embeds, ord=2, axis=-1, keepdims=True) |
|
text_embeds = text_embeds / tf.norm(text_embeds, ord=2, axis=-1, keepdims=True) |
|
|
|
|
|
logit_scale = tf.exp(self.logit_scale) |
|
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale |
|
logits_per_image = tf.transpose(logits_per_text) |
|
|
|
loss = None |
|
if return_loss: |
|
loss = blip_loss(logits_per_text) |
|
loss = tf.reshape(loss, (1,)) |
|
|
|
if not return_dict: |
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFBlipOutput( |
|
loss=loss, |
|
logits_per_image=logits_per_image, |
|
logits_per_text=logits_per_text, |
|
text_embeds=text_embeds, |
|
image_embeds=image_embeds, |
|
text_model_output=text_outputs, |
|
vision_model_output=vision_outputs, |
|
) |
|
|
|
|
|
class TFBlipModel(TFBlipPreTrainedModel): |
|
config_class = BlipConfig |
|
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] |
|
main_input_name = "input_ids" |
|
|
|
def __init__(self, config: BlipConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.blip = TFBlipMainLayer(config, name="blip") |
|
|
|
def serving_output(self, output: TFBlipOutput) -> TFBlipOutput: |
|
return TFBlipOutput( |
|
logits_per_image=output.logits_per_image, |
|
logits_per_text=output.logits_per_text, |
|
text_embeds=output.text_embeds, |
|
image_embeds=output.image_embeds, |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFBlipOutput, config_class=BlipConfig) |
|
def call( |
|
self, |
|
input_ids: tf.Tensor | None = None, |
|
pixel_values: tf.Tensor | None = None, |
|
attention_mask: tf.Tensor | None = None, |
|
position_ids: tf.Tensor | None = None, |
|
return_loss: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = None, |
|
) -> Union[Tuple, TFBlipOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, TFBlipModel |
|
|
|
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor( |
|
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True |
|
... ) |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score |
|
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities |
|
```""" |
|
outputs = self.blip( |
|
input_ids=input_ids, |
|
pixel_values=pixel_values, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
return_loss=return_loss, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
return outputs |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) |
|
def get_text_features( |
|
self, |
|
input_ids: tf.Tensor | None = None, |
|
attention_mask: tf.Tensor | None = None, |
|
position_ids: tf.Tensor | None = None, |
|
return_dict: Optional[bool] = None, |
|
) -> tf.Tensor: |
|
r""" |
|
Returns: |
|
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying |
|
the projection layer to the pooled output of [`TFBlipTextModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoProcessor, TFBlipModel |
|
|
|
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf") |
|
>>> text_features = model.get_text_features(**inputs) |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
text_outputs = self.blip.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = text_outputs[1] |
|
text_features = self.blip.text_projection(pooled_output) |
|
|
|
return text_features |
|
|
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
def get_image_features( |
|
self, |
|
pixel_values: tf.Tensor | None = None, |
|
return_dict: Optional[bool] = None, |
|
) -> tf.Tensor: |
|
r""" |
|
Returns: |
|
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying |
|
the projection layer to the pooled output of [`TFBlipVisionModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, TFBlipModel |
|
|
|
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="tf") |
|
|
|
>>> image_features = model.get_image_features(**inputs) |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.blip.vision_model(pixel_values=pixel_values, return_dict=return_dict) |
|
|
|
pooled_output = vision_outputs[1] |
|
image_features = self.blip.visual_projection(pooled_output) |
|
|
|
return image_features |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass |
|
`input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise, |
|
the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption |
|
from the text input. If no text input is provided, the decoder will start with the [BOS] token only. |
|
""", |
|
BLIP_START_DOCSTRING, |
|
) |
|
class TFBlipForConditionalGeneration(TFBlipPreTrainedModel): |
|
config_class = BlipConfig |
|
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config: BlipConfig, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
|
|
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model") |
|
|
|
self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder") |
|
|
|
self.decoder_input_ids = config.text_config.bos_token_id |
|
self.decoder_pad_token_id = config.text_config.pad_token_id |
|
|
|
def get_input_embeddings(self) -> tf.keras.layers.Layer: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFBlipForConditionalGenerationModelOutput, config_class=BlipConfig) |
|
def call( |
|
self, |
|
pixel_values: tf.Tensor, |
|
input_ids: tf.Tensor | None = None, |
|
attention_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
labels: tf.Tensor | None = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = None, |
|
) -> Union[Tuple, TFBlipForConditionalGenerationModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, TFBlipForConditionalGeneration |
|
|
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> text = "A picture of" |
|
|
|
>>> inputs = processor(images=image, text=text, return_tensors="tf") |
|
|
|
>>> outputs = model(**inputs) |
|
```""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
image_embeds = vision_outputs[0] |
|
|
|
outputs = self.text_decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
labels=labels, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
if not return_dict: |
|
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
if outputs.loss is not None and outputs.loss.shape.rank == 0: |
|
outputs.loss = tf.reshape(outputs.loss, (1,)) |
|
|
|
return TFBlipForConditionalGenerationModelOutput( |
|
loss=outputs.loss, |
|
logits=outputs.logits, |
|
image_embeds=image_embeds, |
|
last_hidden_state=vision_outputs.last_hidden_state, |
|
hidden_states=vision_outputs.hidden_states, |
|
attentions=vision_outputs.attentions, |
|
) |
|
|
|
def generate( |
|
self, |
|
pixel_values: tf.Tensor, |
|
input_ids: tf.Tensor | None = None, |
|
attention_mask: tf.Tensor | None = None, |
|
**generate_kwargs, |
|
) -> tf.Tensor: |
|
r""" |
|
Overrides *generate* function to be able to use the model as a conditional generator |
|
|
|
Parameters: |
|
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`: |
|
Input image to be processed |
|
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
The sequence used as a prompt for the generation. |
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
|
|
Examples: |
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, TFBlipForConditionalGeneration |
|
|
|
>>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="tf") |
|
|
|
>>> outputs = model.generate(**inputs) |
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True)) |
|
two cats sleeping on a couch |
|
``` |
|
""" |
|
|
|
batch_size = pixel_values.shape[0] |
|
vision_outputs = self.vision_model(pixel_values=pixel_values) |
|
|
|
image_embeds = vision_outputs[0] |
|
|
|
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32) |
|
|
|
if isinstance(input_ids, list): |
|
input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int32) |
|
elif input_ids is None: |
|
input_ids = tf.convert_to_tensor( |
|
[[self.decoder_input_ids, self.config.text_config.eos_token_id]], dtype=tf.int32 |
|
) |
|
|
|
input_ids = tf.tile(input_ids, (batch_size, 1)) |
|
|
|
|
|
input_ids = tf.concat( |
|
[tf.ones((batch_size, 1), dtype=tf.int32) * self.config.text_config.bos_token_id, input_ids[:, 1:]], axis=1 |
|
) |
|
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None |
|
|
|
outputs = self.text_decoder.generate( |
|
input_ids=input_ids[:, :-1], |
|
eos_token_id=self.config.text_config.sep_token_id, |
|
pad_token_id=self.config.text_config.pad_token_id, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_attention_mask, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text |
|
decoder. The vision encoder will encode the input image, the text encoder will encode the input question together |
|
with the encoding of the image, and the text decoder will output the answer to the question. |
|
""", |
|
BLIP_START_DOCSTRING, |
|
) |
|
class TFBlipForQuestionAnswering(TFBlipPreTrainedModel): |
|
config_class = BlipConfig |
|
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] |
|
|
|
def __init__(self, config: BlipConfig, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
|
|
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model") |
|
|
|
self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False) |
|
|
|
self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder") |
|
|
|
self.decoder_pad_token_id = config.text_config.pad_token_id |
|
self.decoder_start_token_id = config.text_config.bos_token_id |
|
|
|
def get_input_embeddings(self) -> tf.keras.layers.Layer: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
|
|
def _shift_right(self, input_ids): |
|
decoder_start_token_id = self.decoder_start_token_id |
|
pad_token_id = self.decoder_pad_token_id |
|
|
|
if decoder_start_token_id is None or pad_token_id is None: |
|
raise ValueError("decoder_start_token_id and pad_token_id must be defined!") |
|
|
|
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) |
|
start_tokens = tf.cast(start_tokens, input_ids.dtype) |
|
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) |
|
|
|
|
|
shifted_input_ids = tf.where( |
|
shifted_input_ids == -100, |
|
tf.cast(tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids.dtype), |
|
shifted_input_ids, |
|
) |
|
|
|
|
|
tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype)) |
|
|
|
return shifted_input_ids |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFBlipTextVisionModelOutput, config_class=BlipVisionConfig) |
|
def call( |
|
self, |
|
input_ids: tf.Tensor, |
|
pixel_values: tf.Tensor | None = None, |
|
decoder_input_ids: tf.Tensor | None = None, |
|
decoder_attention_mask: tf.Tensor | None = None, |
|
attention_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
labels: tf.Tensor | None = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = None, |
|
) -> Union[Tuple, TFBlipTextVisionModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, TFBlipForQuestionAnswering |
|
|
|
>>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> # training |
|
>>> text = "How many cats are in the picture?" |
|
>>> label = "2" |
|
>>> inputs = processor(images=image, text=text, return_tensors="tf") |
|
>>> labels = processor(text=label, return_tensors="tf").input_ids |
|
|
|
>>> inputs["labels"] = labels |
|
>>> outputs = model(**inputs) |
|
>>> loss = outputs.loss |
|
|
|
>>> # inference |
|
>>> text = "How many cats are in the picture?" |
|
>>> inputs = processor(images=image, text=text, return_tensors="tf") |
|
>>> outputs = model.generate(**inputs) |
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True)) |
|
2 |
|
```""" |
|
if labels is None and decoder_input_ids is None: |
|
raise ValueError( |
|
"Either `decoder_input_ids` or `labels` should be passed when calling" |
|
" `TFBlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you" |
|
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`" |
|
) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
image_embeds = vision_outputs[0] |
|
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64) |
|
|
|
question_embeds = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_attention_mask, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state |
|
|
|
if labels is not None and decoder_input_ids is None: |
|
|
|
decoder_input_ids = labels |
|
|
|
answer_output = self.text_decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
encoder_hidden_states=question_embeds, |
|
encoder_attention_mask=attention_mask, |
|
labels=labels, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
if labels is not None: |
|
decoder_loss = tf.reduce_mean(answer_output.loss) if return_dict else tf.reduce_mean(answer_output[0]) |
|
else: |
|
decoder_loss = None |
|
|
|
if not return_dict: |
|
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return TFBlipTextVisionModelOutput( |
|
loss=decoder_loss, |
|
image_embeds=image_embeds, |
|
last_hidden_state=vision_outputs.last_hidden_state, |
|
hidden_states=vision_outputs.hidden_states, |
|
attentions=vision_outputs.attentions, |
|
) |
|
|
|
def generate( |
|
self, |
|
input_ids: tf.Tensor, |
|
pixel_values: tf.Tensor, |
|
attention_mask: tf.Tensor | None = None, |
|
**generate_kwargs, |
|
) -> tf.Tensor: |
|
r""" |
|
Overrides *generate* function to be able to use the model as a conditional generator |
|
|
|
Parameters: |
|
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): |
|
The sequence used as a prompt for the generation. |
|
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`: |
|
Input image to be processed |
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for |
|
tokens that are NOT MASKED, `0` for MASKED tokens. |
|
generate_kwargs (dict, *optional*): |
|
Additional arguments passed to the `generate` function of the decoder |
|
|
|
|
|
Examples: |
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, TFBlipForQuestionAnswering |
|
|
|
>>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> text = "How many cats are in the picture?" |
|
|
|
>>> inputs = processor(images=image, text=text, return_tensors="tf") |
|
|
|
>>> outputs = model.generate(**inputs) |
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True)) |
|
2 |
|
``` |
|
""" |
|
vision_outputs = self.vision_model(pixel_values=pixel_values) |
|
|
|
image_embeds = vision_outputs[0] |
|
|
|
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32) |
|
|
|
if isinstance(input_ids, list): |
|
input_ids = tf.Tensor(input_ids) |
|
|
|
question_outputs = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_attention_mask, |
|
return_dict=False, |
|
) |
|
|
|
question_embeds = question_outputs[0] |
|
|
|
question_attention_mask = tf.ones(shape_list(question_embeds)[:-1], dtype=tf.int32) |
|
|
|
bos_ids = tf.fill( |
|
(tf.shape(question_embeds)[0], 1), value=tf.cast(self.decoder_start_token_id, input_ids.dtype) |
|
) |
|
|
|
outputs = self.text_decoder.generate( |
|
input_ids=bos_ids, |
|
eos_token_id=self.config.text_config.sep_token_id, |
|
pad_token_id=self.config.text_config.pad_token_id, |
|
encoder_hidden_states=question_embeds, |
|
encoder_attention_mask=question_attention_mask, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of |
|
image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to |
|
the image. |
|
""", |
|
BLIP_START_DOCSTRING, |
|
) |
|
class TFBlipForImageTextRetrieval(TFBlipPreTrainedModel): |
|
config_class = BlipConfig |
|
|
|
def __init__(self, config: BlipConfig, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
|
|
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model") |
|
|
|
self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False) |
|
|
|
|
|
self.vision_proj = tf.keras.layers.Dense( |
|
config.image_text_hidden_size, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
name="vision_proj", |
|
) |
|
|
|
|
|
self.text_proj = tf.keras.layers.Dense( |
|
config.image_text_hidden_size, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
name="text_proj", |
|
) |
|
|
|
|
|
self.itm_head = tf.keras.layers.Dense( |
|
2, kernel_initializer=get_initializer(config.initializer_range), name="itm_head" |
|
) |
|
|
|
self.decoder_pad_token_id = ( |
|
config.text_config.pad_token_id |
|
if not hasattr(config, "decoder_pad_token_id") |
|
else config.decoder_pad_token_id |
|
) |
|
self.decoder_start_token_id = ( |
|
config.text_config.bos_token_id |
|
if not hasattr(config, "decoder_start_token_id") |
|
else config.decoder_start_token_id |
|
) |
|
|
|
def get_input_embeddings(self) -> tf.keras.layers.Layer: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=TFBlipImageTextMatchingModelOutput, config_class=BlipVisionConfig) |
|
def call( |
|
self, |
|
input_ids: tf.Tensor, |
|
pixel_values: tf.Tensor | None = None, |
|
use_itm_head: Optional[bool] = True, |
|
attention_mask: tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = None, |
|
) -> Union[Tuple, TFBlipImageTextMatchingModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, TFBlipForImageTextRetrieval |
|
|
|
>>> model = TFBlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco") |
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> text = "an image of a cat" |
|
|
|
>>> inputs = processor(images=image, text=text, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
``` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
image_embeds = vision_outputs[0] |
|
image_atts = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64) |
|
|
|
|
|
|
|
|
|
|
|
itm_question_embeds = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_atts, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
itm_question_embeds = itm_question_embeds[0] if not return_dict else itm_question_embeds.last_hidden_state |
|
|
|
itm_output = self.itm_head(itm_question_embeds[:, 0, :]) |
|
|
|
no_itm_question_embeds = self.text_encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
no_itm_question_embeds = ( |
|
no_itm_question_embeds[0] if not return_dict else no_itm_question_embeds.last_hidden_state |
|
) |
|
|
|
image_feat, _ = tf.linalg.normalize(self.vision_proj(image_embeds[:, 0, :]), ord=2, axis=-1) |
|
text_feat, _ = tf.linalg.normalize(self.text_proj(no_itm_question_embeds[:, 0, :]), ord=2, axis=-1) |
|
|
|
no_itm_output = tf.matmul(image_feat, text_feat, transpose_b=True) |
|
|
|
if use_itm_head: |
|
output = itm_output |
|
question_embeds = itm_question_embeds |
|
else: |
|
output = no_itm_output |
|
question_embeds = no_itm_question_embeds |
|
|
|
if not return_dict: |
|
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,) |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return TFBlipImageTextMatchingModelOutput( |
|
itm_score=output, |
|
last_hidden_state=vision_outputs.last_hidden_state, |
|
hidden_states=vision_outputs.hidden_states, |
|
attentions=vision_outputs.attentions, |
|
question_embeds=question_embeds, |
|
) |
|
|