|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Flax BLOOM model.""" |
|
|
|
import math |
|
from functools import partial |
|
from typing import Optional, Tuple |
|
|
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze |
|
from flax.linen import combine_masks, dot_product_attention_weights, make_causal_mask |
|
from flax.linen.activation import tanh |
|
from flax.traverse_util import flatten_dict, unflatten_dict |
|
from jax import lax |
|
|
|
from ...modeling_flax_outputs import ( |
|
FlaxBaseModelOutput, |
|
FlaxBaseModelOutputWithPastAndCrossAttentions, |
|
FlaxCausalLMOutput, |
|
) |
|
from ...modeling_flax_utils import FlaxPreTrainedModel, append_call_sample_docstring |
|
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging |
|
from .configuration_bloom import BloomConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "bigscience/bloom" |
|
_CONFIG_FOR_DOC = "BloomConfig" |
|
|
|
|
|
BLOOM_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a Flax Linen |
|
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a |
|
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. |
|
|
|
Finally, this model supports inherent JAX features such as: |
|
|
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) |
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) |
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) |
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) |
|
|
|
Parameters: |
|
config ([`BloomConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. |
|
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): |
|
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and |
|
`jax.numpy.bfloat16` (on TPUs). |
|
|
|
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If |
|
specified all the computation will be performed with the given `dtype`. |
|
|
|
**Note that this only specifies the dtype of the computation and does not influence the dtype of model |
|
parameters.** |
|
|
|
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and |
|
[`~FlaxPreTrainedModel.to_bf16`]. |
|
""" |
|
|
|
BLOOM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): |
|
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): |
|
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast |
|
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
def build_alibi_tensor(attention_mask: jnp.ndarray, num_heads: int, dtype: Optional[jnp.dtype] = jnp.float32): |
|
""" |
|
Flax implementation of the BLOOM Alibi tensor. BLOOM Alibi tensor is not causal as the original paper mentions, it |
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value |
|
`softmax(l+a) = softmax(l)`. Based on |
|
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 |
|
Link to paper: https://arxiv.org/abs/2108.12409 |
|
|
|
Args: |
|
attention_mask (`jnp.ndarray`): |
|
Token-wise attention mask, this should be of shape `(batch_size, max_seq_len)`. |
|
num_heads (`int`): |
|
Number of attention heads. |
|
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): |
|
The data type (dtype) of the output tensor. |
|
|
|
Returns: Alibi tensor of shape `(batch_size * num_heads, 1, max_seq_len)`. |
|
""" |
|
batch_size, seq_length = attention_mask.shape |
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) |
|
base = jnp.array(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=jnp.float32) |
|
powers = jnp.arange(1, 1 + closest_power_of_2, dtype=jnp.float32) |
|
slopes = jax.lax.pow(base, powers) |
|
|
|
if closest_power_of_2 != num_heads: |
|
extra_base = jnp.array(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=jnp.float32) |
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) |
|
extra_powers = jnp.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=jnp.float32) |
|
slopes = jnp.cat([slopes, jax.lax.pow(extra_base, extra_powers)], axis=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arange_tensor = ((attention_mask.cumsum(axis=-1) - 1) * attention_mask)[:, None, :] |
|
alibi = slopes[..., None] * arange_tensor |
|
alibi = jnp.expand_dims(alibi, axis=2) |
|
return jnp.asarray(alibi, dtype) |
|
|
|
|
|
class FlaxBloomAttention(nn.Module): |
|
config: BloomConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.hidden_size = self.config.hidden_size |
|
self.num_heads = self.config.n_head |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32 |
|
|
|
if self.head_dim * self.num_heads != self.hidden_size: |
|
raise ValueError( |
|
f"`hidden_size` must be divisible by `num_heads` (got `hidden_size`: {self.hidden_size} and " |
|
f"`num_heads`: {self.num_heads})." |
|
) |
|
|
|
dense = partial( |
|
nn.Dense, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(self.config.initializer_range), |
|
) |
|
|
|
self.query_key_value = dense(self.hidden_size * 3) |
|
self.dense = dense(self.hidden_size) |
|
self.resid_dropout = nn.Dropout(rate=self.config.hidden_dropout) |
|
|
|
def _split_heads(self, hidden_states): |
|
return hidden_states.reshape(hidden_states.shape[:-1] + (self.num_heads, self.head_dim * 3)) |
|
|
|
def _merge_heads(self, hidden_states): |
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) |
|
|
|
@nn.compact |
|
|
|
def _concatenate_to_cache(self, key, value, query, attention_mask): |
|
""" |
|
This function takes projected key, value states from a single input token and concatenates the states to cached |
|
states from previous steps. This function is slighly adapted from the official Flax repository: |
|
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 |
|
""" |
|
|
|
is_initialized = self.has_variable("cache", "cached_key") |
|
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) |
|
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) |
|
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) |
|
|
|
if is_initialized: |
|
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape |
|
|
|
cur_index = cache_index.value |
|
indices = (0,) * len(batch_dims) + (cur_index, 0, 0) |
|
key = lax.dynamic_update_slice(cached_key.value, key, indices) |
|
value = lax.dynamic_update_slice(cached_value.value, value, indices) |
|
cached_key.value = key |
|
cached_value.value = value |
|
num_updated_cache_vectors = query.shape[1] |
|
cache_index.value = cache_index.value + num_updated_cache_vectors |
|
|
|
|
|
pad_mask = jnp.broadcast_to( |
|
jnp.arange(max_length) < cur_index + num_updated_cache_vectors, |
|
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), |
|
) |
|
attention_mask = combine_masks(pad_mask, attention_mask) |
|
return key, value, attention_mask |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
residual, |
|
alibi, |
|
attention_mask=None, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
|
|
fused_qkv = self.query_key_value(hidden_states) |
|
fused_qkv = self._split_heads(fused_qkv) |
|
query, key, value = jnp.split(fused_qkv, 3, axis=-1) |
|
|
|
causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") |
|
|
|
|
|
causal_attention_mask_shift = ( |
|
self.variables["cache"]["cache_index"] if self.has_variable("cache", "cached_key") else 0 |
|
) |
|
|
|
|
|
if self.has_variable("cache", "cached_key"): |
|
max_decoder_length = self.variables["cache"]["cached_key"].shape[1] |
|
causal_attention_mask = jax.lax.dynamic_slice( |
|
causal_attention_mask, |
|
(0, 0, causal_attention_mask_shift, 0), |
|
(1, 1, seq_length, max_decoder_length), |
|
) |
|
|
|
|
|
causal_attention_mask = jnp.broadcast_to( |
|
causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] |
|
) |
|
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape) |
|
attention_mask = combine_masks(attention_mask, causal_attention_mask) |
|
|
|
dropout_rng = None |
|
if not deterministic and self.config.attention_dropout > 0.0: |
|
dropout_rng = self.make_rng("dropout") |
|
|
|
|
|
|
|
if self.has_variable("cache", "cached_key") or init_cache: |
|
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) |
|
|
|
|
|
mask_value = jnp.finfo(self.dtype).min |
|
attention_bias = lax.select( |
|
attention_mask > 0, |
|
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), |
|
jnp.full(attention_mask.shape, mask_value).astype(self.dtype), |
|
) |
|
|
|
attention_bias = attention_bias + alibi |
|
|
|
|
|
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype |
|
|
|
attn_weights = dot_product_attention_weights( |
|
query, |
|
key, |
|
bias=attention_bias, |
|
dropout_rng=dropout_rng, |
|
dropout_rate=self.config.attention_dropout, |
|
deterministic=deterministic, |
|
dtype=attention_dtype, |
|
) |
|
|
|
|
|
if self.attention_softmax_in_fp32: |
|
attn_weights = attn_weights.astype(self.dtype) |
|
|
|
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) |
|
attn_output = self._merge_heads(attn_output) |
|
attn_output = self.dense(attn_output) |
|
attn_output = self.resid_dropout(attn_output, deterministic=deterministic) |
|
|
|
attn_output = attn_output + residual |
|
|
|
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) |
|
return outputs |
|
|
|
|
|
class BloomGELU(nn.Module): |
|
def setup(self): |
|
self.dtype = jnp.float32 |
|
|
|
def __call__(self, x): |
|
return x * 0.5 * (1.0 + tanh(0.79788456 * x * (1 + 0.044715 * x * x))) |
|
|
|
|
|
class FlaxBloomMLP(nn.Module): |
|
config: BloomConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
hidden_size = self.config.hidden_size |
|
|
|
kernel_init = jax.nn.initializers.normal(self.config.initializer_range) |
|
|
|
self.dense_h_to_4h = nn.Dense(4 * hidden_size, dtype=self.dtype, kernel_init=kernel_init) |
|
self.dense_4h_to_h = nn.Dense(hidden_size, dtype=self.dtype, kernel_init=kernel_init) |
|
self.hidden_dropout = nn.Dropout(self.config.hidden_dropout) |
|
self.act = BloomGELU() |
|
|
|
def __call__(self, hidden_states, residual, deterministic: bool = True): |
|
hidden_states = self.dense_h_to_4h(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
|
|
intermediate_output = self.dense_4h_to_h(hidden_states) |
|
|
|
intermediate_output = intermediate_output + residual |
|
hidden_states = self.hidden_dropout(intermediate_output, deterministic=deterministic) |
|
|
|
return hidden_states |
|
|
|
|
|
class FlaxBloomBlock(nn.Module): |
|
config: BloomConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.input_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) |
|
|
|
self.self_attention = FlaxBloomAttention(self.config, dtype=self.dtype) |
|
self.post_attention_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) |
|
|
|
self.mlp = FlaxBloomMLP(self.config, dtype=self.dtype) |
|
|
|
self.apply_residual_connection_post_layernorm = self.config.apply_residual_connection_post_layernorm |
|
self.hidden_dropout = self.config.hidden_dropout |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
alibi, |
|
attention_mask=None, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
layernorm_output = self.input_layernorm(hidden_states) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
|
|
|
|
attn_outputs = self.self_attention( |
|
layernorm_output, |
|
residual=residual, |
|
alibi=alibi, |
|
attention_mask=attention_mask, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
attention_output = attn_outputs[0] |
|
|
|
outputs = attn_outputs[1:] |
|
|
|
post_layernorm = self.post_attention_layernorm(attention_output) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = post_layernorm |
|
else: |
|
residual = attention_output |
|
|
|
output = self.mlp(post_layernorm, residual, deterministic=deterministic) |
|
|
|
outputs = (output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class FlaxBloomPreTrainedModel(FlaxPreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BloomConfig |
|
base_model_prefix = "transformer" |
|
module_class: nn.Module = None |
|
|
|
def __init__( |
|
self, |
|
config: BloomConfig, |
|
input_shape: Tuple = (1, 1), |
|
seed: int = 0, |
|
dtype: jnp.dtype = jnp.float32, |
|
_do_init: bool = True, |
|
**kwargs, |
|
): |
|
module = self.module_class(config=config, dtype=dtype, **kwargs) |
|
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) |
|
|
|
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: |
|
|
|
input_ids = jnp.zeros(input_shape, dtype="i4") |
|
attention_mask = jnp.ones_like(input_ids) |
|
params_rng, dropout_rng = jax.random.split(rng) |
|
rngs = {"params": params_rng, "dropout": dropout_rng} |
|
|
|
random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"] |
|
|
|
if params is not None: |
|
random_params = flatten_dict(unfreeze(random_params)) |
|
params = flatten_dict(unfreeze(params)) |
|
for missing_key in self._missing_keys: |
|
params[missing_key] = random_params[missing_key] |
|
self._missing_keys = set() |
|
return freeze(unflatten_dict(params)) |
|
else: |
|
return random_params |
|
|
|
def init_cache(self, batch_size, max_length): |
|
r""" |
|
Args: |
|
batch_size (`int`): |
|
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. |
|
max_length (`int`): |
|
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized |
|
cache. |
|
""" |
|
|
|
input_ids = jnp.ones((batch_size, max_length), dtype="i4") |
|
attention_mask = jnp.ones_like(input_ids) |
|
|
|
init_variables = self.module.init( |
|
jax.random.PRNGKey(0), input_ids, attention_mask, return_dict=False, init_cache=True |
|
) |
|
return unfreeze(init_variables["cache"]) |
|
|
|
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) |
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
past_key_values: dict = None, |
|
params: dict = None, |
|
dropout_rng: jax.random.PRNGKey = None, |
|
train: bool = False, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
batch_size, sequence_length = input_ids.shape |
|
|
|
if attention_mask is None: |
|
attention_mask = jnp.ones((batch_size, sequence_length)) |
|
|
|
|
|
rngs = {} |
|
if dropout_rng is not None: |
|
rngs["dropout"] = dropout_rng |
|
|
|
inputs = {"params": params or self.params} |
|
|
|
|
|
|
|
|
|
if past_key_values: |
|
inputs["cache"] = past_key_values |
|
mutable = ["cache"] |
|
else: |
|
mutable = False |
|
|
|
outputs = self.module.apply( |
|
inputs, |
|
jnp.array(input_ids, dtype="i4"), |
|
jnp.array(attention_mask, dtype="i4"), |
|
not train, |
|
False, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict, |
|
rngs=rngs, |
|
mutable=mutable, |
|
) |
|
|
|
|
|
if past_key_values is not None and return_dict: |
|
outputs, past_key_values = outputs |
|
outputs["past_key_values"] = unfreeze(past_key_values["cache"]) |
|
return outputs |
|
elif past_key_values is not None and not return_dict: |
|
outputs, past_key_values = outputs |
|
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class FlaxBloomBlockCollection(nn.Module): |
|
config: BloomConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.layers = [ |
|
FlaxBloomBlock(self.config, name=str(layer_number), dtype=self.dtype) |
|
for layer_number in range(self.config.num_hidden_layers) |
|
] |
|
|
|
def __call__( |
|
self, |
|
hidden_states, |
|
alibi, |
|
attention_mask=None, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
): |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
for layer_number in range(self.config.num_hidden_layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = self.layers[layer_number]( |
|
hidden_states, |
|
alibi=alibi, |
|
attention_mask=attention_mask, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions += (layer_outputs[1],) |
|
|
|
|
|
outputs = (hidden_states, all_hidden_states, all_attentions) |
|
|
|
return outputs |
|
|
|
|
|
class FlaxBloomModule(nn.Module): |
|
config: BloomConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.embed_dim = self.config.hidden_size |
|
|
|
|
|
self.word_embeddings = nn.Embed( |
|
self.config.vocab_size, |
|
self.embed_dim, |
|
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), |
|
dtype=self.dtype, |
|
) |
|
|
|
|
|
self.word_embeddings_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) |
|
|
|
|
|
self.h = FlaxBloomBlockCollection(self.config, dtype=self.dtype) |
|
|
|
|
|
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) |
|
|
|
def __call__( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
deterministic=True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds) |
|
|
|
|
|
alibi = build_alibi_tensor(attention_mask, self.config.n_head, dtype=hidden_states.dtype) |
|
|
|
outputs = self.h( |
|
hidden_states, |
|
alibi=alibi, |
|
attention_mask=attention_mask, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_hidden_states=output_hidden_states, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = outputs[1] + (hidden_states,) |
|
outputs = (hidden_states, all_hidden_states) + outputs[2:] |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
if not return_dict: |
|
return tuple(v for v in [outputs[0], outputs[-1]] if v is not None) |
|
|
|
return FlaxBaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
hidden_states=outputs[1], |
|
attentions=outputs[-1], |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.", |
|
BLOOM_START_DOCSTRING, |
|
) |
|
|
|
class FlaxBloomModel(FlaxBloomPreTrainedModel): |
|
module_class = FlaxBloomModule |
|
|
|
|
|
append_call_sample_docstring(FlaxBloomModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) |
|
|
|
|
|
class FlaxBloomForCausalLMModule(nn.Module): |
|
config: BloomConfig |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
self.transformer = FlaxBloomModule(self.config, dtype=self.dtype) |
|
self.lm_head = nn.Dense( |
|
self.config.vocab_size, |
|
use_bias=False, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), |
|
) |
|
|
|
def __call__( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
deterministic: bool = True, |
|
init_cache: bool = False, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
): |
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
deterministic=deterministic, |
|
init_cache=init_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
if self.config.tie_word_embeddings: |
|
shared_kernel = self.transformer.variables["params"]["word_embeddings"]["embedding"].T |
|
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) |
|
else: |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
if not return_dict: |
|
return (lm_logits,) + outputs[1:] |
|
|
|
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
BLOOM_START_DOCSTRING, |
|
) |
|
class FlaxBloomForCausalLM(FlaxBloomPreTrainedModel): |
|
module_class = FlaxBloomForCausalLMModule |
|
|
|
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): |
|
|
|
batch_size, seq_length = input_ids.shape |
|
|
|
past_key_values = self.init_cache(batch_size, max_length) |
|
|
|
|
|
|
|
|
|
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") |
|
if attention_mask is not None: |
|
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) |
|
|
|
return { |
|
"past_key_values": past_key_values, |
|
"attention_mask": extended_attention_mask, |
|
} |
|
|
|
def update_inputs_for_generation(self, model_outputs, model_kwargs): |
|
model_kwargs["past_key_values"] = model_outputs.past_key_values |
|
return model_kwargs |
|
|
|
|
|
append_call_sample_docstring(FlaxBloomForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC) |
|
|