|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" ConvNeXTV2 model configuration""" |
|
|
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", |
|
} |
|
|
|
|
|
class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an |
|
ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 |
|
[facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
patch_size (`int`, optional, defaults to 4): |
|
Patch size to use in the patch embedding layer. |
|
num_stages (`int`, optional, defaults to 4): |
|
The number of stages in the model. |
|
hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): |
|
Dimensionality (hidden size) at each stage. |
|
depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): |
|
Depth (number of blocks) for each stage. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, |
|
`"selu"` and `"gelu_new"` are supported. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
drop_path_rate (`float`, *optional*, defaults to 0.0): |
|
The drop rate for stochastic depth. |
|
out_features (`List[str]`, *optional*): |
|
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. |
|
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the |
|
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. |
|
out_indices (`List[int]`, *optional*): |
|
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how |
|
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. |
|
If unset and `out_features` is unset, will default to the last stage. |
|
|
|
Example: |
|
```python |
|
>>> from transformers import ConvNeXTV2Config, ConvNextV2Model |
|
|
|
>>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration |
|
>>> configuration = ConvNeXTV2Config() |
|
|
|
>>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration |
|
>>> model = ConvNextV2Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "convnextv2" |
|
|
|
def __init__( |
|
self, |
|
num_channels=3, |
|
patch_size=4, |
|
num_stages=4, |
|
hidden_sizes=None, |
|
depths=None, |
|
hidden_act="gelu", |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
drop_path_rate=0.0, |
|
image_size=224, |
|
out_features=None, |
|
out_indices=None, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.num_stages = num_stages |
|
self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes |
|
self.depths = [3, 3, 9, 3] if depths is None else depths |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.drop_path_rate = drop_path_rate |
|
self.image_size = image_size |
|
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] |
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices( |
|
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names |
|
) |
|
|