|
from typing import Union |
|
|
|
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging |
|
from .base import PIPELINE_INIT_ARGS, Pipeline |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from ..image_utils import load_image |
|
|
|
if is_torch_available(): |
|
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class VisualQuestionAnsweringPipeline(Pipeline): |
|
""" |
|
Visual Question Answering pipeline using a `AutoModelForVisualQuestionAnswering`. This pipeline is currently only |
|
available in PyTorch. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> oracle = pipeline(model="dandelin/vilt-b32-finetuned-vqa") |
|
>>> image_url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/lena.png" |
|
>>> oracle(question="What is she wearing ?", image=image_url) |
|
[{'score': 0.948, 'answer': 'hat'}, {'score': 0.009, 'answer': 'fedora'}, {'score': 0.003, 'answer': 'clothes'}, {'score': 0.003, 'answer': 'sun hat'}, {'score': 0.002, 'answer': 'nothing'}] |
|
|
|
>>> oracle(question="What is she wearing ?", image=image_url, top_k=1) |
|
[{'score': 0.948, 'answer': 'hat'}] |
|
|
|
>>> oracle(question="Is this a person ?", image=image_url, top_k=1) |
|
[{'score': 0.993, 'answer': 'yes'}] |
|
|
|
>>> oracle(question="Is this a man ?", image=image_url, top_k=1) |
|
[{'score': 0.996, 'answer': 'no'}] |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This visual question answering pipeline can currently be loaded from [`pipeline`] using the following task |
|
identifiers: `"visual-question-answering", "vqa"`. |
|
|
|
The models that this pipeline can use are models that have been fine-tuned on a visual question answering task. See |
|
the up-to-date list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?filter=visual-question-answering). |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.check_model_type(MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES) |
|
|
|
def _sanitize_parameters(self, top_k=None, padding=None, truncation=None, timeout=None, **kwargs): |
|
preprocess_params, postprocess_params = {}, {} |
|
if padding is not None: |
|
preprocess_params["padding"] = padding |
|
if truncation is not None: |
|
preprocess_params["truncation"] = truncation |
|
if timeout is not None: |
|
preprocess_params["timeout"] = timeout |
|
if top_k is not None: |
|
postprocess_params["top_k"] = top_k |
|
return preprocess_params, {}, postprocess_params |
|
|
|
def __call__(self, image: Union["Image.Image", str], question: str = None, **kwargs): |
|
r""" |
|
Answers open-ended questions about images. The pipeline accepts several types of inputs which are detailed |
|
below: |
|
|
|
- `pipeline(image=image, question=question)` |
|
- `pipeline({"image": image, "question": question})` |
|
- `pipeline([{"image": image, "question": question}])` |
|
- `pipeline([{"image": image, "question": question}, {"image": image, "question": question}])` |
|
|
|
Args: |
|
image (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): |
|
The pipeline handles three types of images: |
|
|
|
- A string containing a http link pointing to an image |
|
- A string containing a local path to an image |
|
- An image loaded in PIL directly |
|
|
|
The pipeline accepts either a single image or a batch of images. If given a single image, it can be |
|
broadcasted to multiple questions. |
|
question (`str`, `List[str]`): |
|
The question(s) asked. If given a single question, it can be broadcasted to multiple images. |
|
top_k (`int`, *optional*, defaults to 5): |
|
The number of top labels that will be returned by the pipeline. If the provided number is higher than |
|
the number of labels available in the model configuration, it will default to the number of labels. |
|
timeout (`float`, *optional*, defaults to None): |
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and |
|
the call may block forever. |
|
Return: |
|
A dictionary or a list of dictionaries containing the result. The dictionaries contain the following keys: |
|
|
|
- **label** (`str`) -- The label identified by the model. |
|
- **score** (`int`) -- The score attributed by the model for that label. |
|
""" |
|
if isinstance(image, (Image.Image, str)) and isinstance(question, str): |
|
inputs = {"image": image, "question": question} |
|
else: |
|
""" |
|
Supports the following format |
|
- {"image": image, "question": question} |
|
- [{"image": image, "question": question}] |
|
- Generator and datasets |
|
""" |
|
inputs = image |
|
results = super().__call__(inputs, **kwargs) |
|
return results |
|
|
|
def preprocess(self, inputs, padding=False, truncation=False, timeout=None): |
|
image = load_image(inputs["image"], timeout=timeout) |
|
model_inputs = self.tokenizer( |
|
inputs["question"], return_tensors=self.framework, padding=padding, truncation=truncation |
|
) |
|
image_features = self.image_processor(images=image, return_tensors=self.framework) |
|
model_inputs.update(image_features) |
|
return model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
if self.model.can_generate(): |
|
model_outputs = self.model.generate(**model_inputs) |
|
else: |
|
model_outputs = self.model(**model_inputs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, top_k=5): |
|
if self.model.can_generate(): |
|
return [ |
|
{"answer": self.tokenizer.decode(output_ids, skip_special_tokens=True).strip()} |
|
for output_ids in model_outputs |
|
] |
|
else: |
|
if top_k > self.model.config.num_labels: |
|
top_k = self.model.config.num_labels |
|
|
|
if self.framework == "pt": |
|
probs = model_outputs.logits.sigmoid()[0] |
|
scores, ids = probs.topk(top_k) |
|
else: |
|
raise ValueError(f"Unsupported framework: {self.framework}") |
|
|
|
scores = scores.tolist() |
|
ids = ids.tolist() |
|
return [{"score": score, "answer": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] |
|
|