theimageconvert2 / transformers_4_35_0 /pipelines /zero_shot_object_detection.py
mart9992's picture
m
4c65bff
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES
logger = logging.get_logger(__name__)
@add_end_docstrings(PIPELINE_INIT_ARGS)
class ZeroShotObjectDetectionPipeline(ChunkPipeline):
"""
Zero shot object detection pipeline using `OwlViTForObjectDetection`. This pipeline predicts bounding boxes of
objects when you provide an image and a set of `candidate_labels`.
Example:
```python
>>> from transformers import pipeline
>>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
>>> detector(
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... candidate_labels=["cat", "couch"],
... )
[{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]
>>> detector(
... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png",
... candidate_labels=["head", "bird"],
... )
[{'score': 0.119, 'label': 'bird', 'box': {'xmin': 71, 'ymin': 170, 'xmax': 410, 'ymax': 508}}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"zero-shot-object-detection"`.
See the list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=zero-shot-object-detection).
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
if self.framework == "tf":
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
requires_backends(self, "vision")
self.check_model_type(MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES)
def __call__(
self,
image: Union[str, "Image.Image", List[Dict[str, Any]]],
candidate_labels: Union[str, List[str]] = None,
**kwargs,
):
"""
Detect objects (bounding boxes & classes) in the image(s) passed as inputs.
Args:
image (`str`, `PIL.Image` or `List[Dict[str, Any]]`):
The pipeline handles three types of images:
- A string containing an http url pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
You can use this parameter to send directly a list of images, or a dataset or a generator like so:
```python
>>> from transformers import pipeline
>>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
>>> detector(
... [
... {
... "image": "http://images.cocodataset.org/val2017/000000039769.jpg",
... "candidate_labels": ["cat", "couch"],
... },
... {
... "image": "http://images.cocodataset.org/val2017/000000039769.jpg",
... "candidate_labels": ["cat", "couch"],
... },
... ]
... )
[[{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.25, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}], [{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]]
```
candidate_labels (`str` or `List[str]` or `List[List[str]]`):
What the model should recognize in the image.
threshold (`float`, *optional*, defaults to 0.1):
The probability necessary to make a prediction.
top_k (`int`, *optional*, defaults to None):
The number of top predictions that will be returned by the pipeline. If the provided number is `None`
or higher than the number of predictions available, it will default to the number of predictions.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
A list of lists containing prediction results, one list per input image. Each list contains dictionaries
with the following keys:
- **label** (`str`) -- Text query corresponding to the found object.
- **score** (`float`) -- Score corresponding to the object (between 0 and 1).
- **box** (`Dict[str,int]`) -- Bounding box of the detected object in image's original size. It is a
dictionary with `x_min`, `x_max`, `y_min`, `y_max` keys.
"""
if "text_queries" in kwargs:
candidate_labels = kwargs.pop("text_queries")
if isinstance(image, (str, Image.Image)):
inputs = {"image": image, "candidate_labels": candidate_labels}
else:
inputs = image
results = super().__call__(inputs, **kwargs)
return results
def _sanitize_parameters(self, **kwargs):
preprocess_params = {}
if "timeout" in kwargs:
preprocess_params["timeout"] = kwargs["timeout"]
postprocess_params = {}
if "threshold" in kwargs:
postprocess_params["threshold"] = kwargs["threshold"]
if "top_k" in kwargs:
postprocess_params["top_k"] = kwargs["top_k"]
return preprocess_params, {}, postprocess_params
def preprocess(self, inputs, timeout=None):
image = load_image(inputs["image"], timeout=timeout)
candidate_labels = inputs["candidate_labels"]
if isinstance(candidate_labels, str):
candidate_labels = candidate_labels.split(",")
target_size = torch.tensor([[image.height, image.width]], dtype=torch.int32)
for i, candidate_label in enumerate(candidate_labels):
text_inputs = self.tokenizer(candidate_label, return_tensors=self.framework)
image_features = self.image_processor(image, return_tensors=self.framework)
yield {
"is_last": i == len(candidate_labels) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def _forward(self, model_inputs):
target_size = model_inputs.pop("target_size")
candidate_label = model_inputs.pop("candidate_label")
is_last = model_inputs.pop("is_last")
outputs = self.model(**model_inputs)
model_outputs = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def postprocess(self, model_outputs, threshold=0.1, top_k=None):
results = []
for model_output in model_outputs:
label = model_output["candidate_label"]
model_output = BaseModelOutput(model_output)
outputs = self.image_processor.post_process_object_detection(
outputs=model_output, threshold=threshold, target_sizes=model_output["target_size"]
)[0]
for index in outputs["scores"].nonzero():
score = outputs["scores"][index].item()
box = self._get_bounding_box(outputs["boxes"][index][0])
result = {"score": score, "label": label, "box": box}
results.append(result)
results = sorted(results, key=lambda x: x["score"], reverse=True)
if top_k:
results = results[:top_k]
return results
def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]:
"""
Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }
Args:
box (`torch.Tensor`): Tensor containing the coordinates in corners format.
Returns:
bbox (`Dict[str, int]`): Dict containing the coordinates in corners format.
"""
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
xmin, ymin, xmax, ymax = box.int().tolist()
bbox = {
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox