# coding=utf-8 # Copyright 2022 BNRist (Tsinghua University), TKLNDST (Nankai University) and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Visual Attention Network (VAN) model.""" import math from collections import OrderedDict from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ....activations import ACT2FN from ....modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ....modeling_utils import PreTrainedModel from ....utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_van import VanConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "VanConfig" # Base docstring _CHECKPOINT_FOR_DOC = "Visual-Attention-Network/van-base" _EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "Visual-Attention-Network/van-base" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" VAN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Visual-Attention-Network/van-base", # See all VAN models at https://huggingface.co/models?filter=van ] # Copied from transformers.models.convnext.modeling_convnext.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Van class VanDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class VanOverlappingPatchEmbedder(nn.Module): """ Downsamples the input using a patchify operation with a `stride` of 4 by default making adjacent windows overlap by half of the area. From [PVTv2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797). """ def __init__(self, in_channels: int, hidden_size: int, patch_size: int = 7, stride: int = 4): super().__init__() self.convolution = nn.Conv2d( in_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2 ) self.normalization = nn.BatchNorm2d(hidden_size) def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_state = self.convolution(input) hidden_state = self.normalization(hidden_state) return hidden_state class VanMlpLayer(nn.Module): """ MLP with depth-wise convolution, from [PVTv2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797). """ def __init__( self, in_channels: int, hidden_size: int, out_channels: int, hidden_act: str = "gelu", dropout_rate: float = 0.5, ): super().__init__() self.in_dense = nn.Conv2d(in_channels, hidden_size, kernel_size=1) self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=3, padding=1, groups=hidden_size) self.activation = ACT2FN[hidden_act] self.dropout1 = nn.Dropout(dropout_rate) self.out_dense = nn.Conv2d(hidden_size, out_channels, kernel_size=1) self.dropout2 = nn.Dropout(dropout_rate) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.in_dense(hidden_state) hidden_state = self.depth_wise(hidden_state) hidden_state = self.activation(hidden_state) hidden_state = self.dropout1(hidden_state) hidden_state = self.out_dense(hidden_state) hidden_state = self.dropout2(hidden_state) return hidden_state class VanLargeKernelAttention(nn.Module): """ Basic Large Kernel Attention (LKA). """ def __init__(self, hidden_size: int): super().__init__() self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=5, padding=2, groups=hidden_size) self.depth_wise_dilated = nn.Conv2d( hidden_size, hidden_size, kernel_size=7, dilation=3, padding=9, groups=hidden_size ) self.point_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=1) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.depth_wise(hidden_state) hidden_state = self.depth_wise_dilated(hidden_state) hidden_state = self.point_wise(hidden_state) return hidden_state class VanLargeKernelAttentionLayer(nn.Module): """ Computes attention using Large Kernel Attention (LKA) and attends the input. """ def __init__(self, hidden_size: int): super().__init__() self.attention = VanLargeKernelAttention(hidden_size) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: attention = self.attention(hidden_state) attended = hidden_state * attention return attended class VanSpatialAttentionLayer(nn.Module): """ Van spatial attention layer composed by projection (via conv) -> act -> Large Kernel Attention (LKA) attention -> projection (via conv) + residual connection. """ def __init__(self, hidden_size: int, hidden_act: str = "gelu"): super().__init__() self.pre_projection = nn.Sequential( OrderedDict( [ ("conv", nn.Conv2d(hidden_size, hidden_size, kernel_size=1)), ("act", ACT2FN[hidden_act]), ] ) ) self.attention_layer = VanLargeKernelAttentionLayer(hidden_size) self.post_projection = nn.Conv2d(hidden_size, hidden_size, kernel_size=1) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.pre_projection(hidden_state) hidden_state = self.attention_layer(hidden_state) hidden_state = self.post_projection(hidden_state) hidden_state = hidden_state + residual return hidden_state class VanLayerScaling(nn.Module): """ Scales the inputs by a learnable parameter initialized by `initial_value`. """ def __init__(self, hidden_size: int, initial_value: float = 1e-2): super().__init__() self.weight = nn.Parameter(initial_value * torch.ones((hidden_size)), requires_grad=True) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: # unsqueezing for broadcasting hidden_state = self.weight.unsqueeze(-1).unsqueeze(-1) * hidden_state return hidden_state class VanLayer(nn.Module): """ Van layer composed by normalization layers, large kernel attention (LKA) and a multi layer perceptron (MLP). """ def __init__( self, config: VanConfig, hidden_size: int, mlp_ratio: int = 4, drop_path_rate: float = 0.5, ): super().__init__() self.drop_path = VanDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.pre_normomalization = nn.BatchNorm2d(hidden_size) self.attention = VanSpatialAttentionLayer(hidden_size, config.hidden_act) self.attention_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value) self.post_normalization = nn.BatchNorm2d(hidden_size) self.mlp = VanMlpLayer( hidden_size, hidden_size * mlp_ratio, hidden_size, config.hidden_act, config.dropout_rate ) self.mlp_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state # attention hidden_state = self.pre_normomalization(hidden_state) hidden_state = self.attention(hidden_state) hidden_state = self.attention_scaling(hidden_state) hidden_state = self.drop_path(hidden_state) # residual connection hidden_state = residual + hidden_state residual = hidden_state # mlp hidden_state = self.post_normalization(hidden_state) hidden_state = self.mlp(hidden_state) hidden_state = self.mlp_scaling(hidden_state) hidden_state = self.drop_path(hidden_state) # residual connection hidden_state = residual + hidden_state return hidden_state class VanStage(nn.Module): """ VanStage, consisting of multiple layers. """ def __init__( self, config: VanConfig, in_channels: int, hidden_size: int, patch_size: int, stride: int, depth: int, mlp_ratio: int = 4, drop_path_rate: float = 0.0, ): super().__init__() self.embeddings = VanOverlappingPatchEmbedder(in_channels, hidden_size, patch_size, stride) self.layers = nn.Sequential( *[ VanLayer( config, hidden_size, mlp_ratio=mlp_ratio, drop_path_rate=drop_path_rate, ) for _ in range(depth) ] ) self.normalization = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.embeddings(hidden_state) hidden_state = self.layers(hidden_state) # rearrange b c h w -> b (h w) c batch_size, hidden_size, height, width = hidden_state.shape hidden_state = hidden_state.flatten(2).transpose(1, 2) hidden_state = self.normalization(hidden_state) # rearrange b (h w) c- > b c h w hidden_state = hidden_state.view(batch_size, height, width, hidden_size).permute(0, 3, 1, 2) return hidden_state class VanEncoder(nn.Module): """ VanEncoder, consisting of multiple stages. """ def __init__(self, config: VanConfig): super().__init__() self.stages = nn.ModuleList([]) patch_sizes = config.patch_sizes strides = config.strides hidden_sizes = config.hidden_sizes depths = config.depths mlp_ratios = config.mlp_ratios drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] for num_stage, (patch_size, stride, hidden_size, depth, mlp_expantion, drop_path_rate) in enumerate( zip(patch_sizes, strides, hidden_sizes, depths, mlp_ratios, drop_path_rates) ): is_first_stage = num_stage == 0 in_channels = hidden_sizes[num_stage - 1] if is_first_stage: in_channels = config.num_channels self.stages.append( VanStage( config, in_channels, hidden_size, patch_size=patch_size, stride=stride, depth=depth, mlp_ratio=mlp_expantion, drop_path_rate=drop_path_rate, ) ) def forward( self, hidden_state: torch.Tensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for _, stage_module in enumerate(self.stages): hidden_state = stage_module(hidden_state) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states) class VanPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VanConfig base_model_prefix = "van" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): nn.init.trunc_normal_(module.weight, std=self.config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.bias, 0) nn.init.constant_(module.weight, 1.0) elif isinstance(module, nn.Conv2d): fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, VanModel): module.gradient_checkpointing = value VAN_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VanConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VAN_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all stages. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare VAN model outputting raw features without any specific head on top. Note, VAN does not have an embedding" " layer.", VAN_START_DOCSTRING, ) class VanModel(VanPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.encoder = VanEncoder(config) # final layernorm layer self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor], output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # global average pooling, n c w h -> n c pooled_output = last_hidden_state.mean(dim=[-2, -1]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ VAN Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, VAN_START_DOCSTRING, ) class VanForImageClassification(VanPreTrainedModel): def __init__(self, config): super().__init__(config) self.van = VanModel(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.van(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)