File size: 21,103 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-research. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
Transforms and data augmentation for both image + bbox.
"""
import copy
import random
import PIL
import cv2
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
from PIL import Image, ImageDraw
from util.box_ops import box_xyxy_to_cxcywh
from util.misc import interpolate
import numpy as np
import os
def crop_mot(image, target, region):
cropped_image = F.crop(image, *region)
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "iscrowd", "obj_ids", "scores"]
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
target["boxes"] = cropped_boxes.reshape(-1, 4)
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append("masks")
# remove elements for which the boxes or masks that have zero area
if "boxes" in target or "masks" in target:
# favor boxes selection when defining which elements to keep
# this is compatible with previous implementation
if "boxes" in target:
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target['masks'].flatten(1).any(1)
for field in fields:
n_size = len(target[field])
target[field] = target[field][keep[:n_size]]
return cropped_image, target
def random_shift(image, target, region, sizes):
oh, ow = sizes
# step 1, shift crop and re-scale image firstly
cropped_image = F.crop(image, *region)
cropped_image = F.resize(cropped_image, sizes)
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "scores", "iscrowd", "obj_ids"]
if "boxes" in target:
boxes = target["boxes"]
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes *= torch.as_tensor([ow / w, oh / h, ow / w, oh / h])
target["boxes"] = cropped_boxes.reshape(-1, 4)
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append("masks")
# remove elements for which the boxes or masks that have zero area
if "boxes" in target or "masks" in target:
# favor boxes selection when defining which elements to keep
# this is compatible with previous implementation
if "boxes" in target:
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target['masks'].flatten(1).any(1)
for field in fields:
n_size = len(target[field])
target[field] = target[field][keep[:n_size]]
return cropped_image, target
def crop(image, target, region):
cropped_image = F.crop(image, *region)
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "area", "iscrowd"]
if 'obj_ids' in target:
fields.append('obj_ids')
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append("masks")
# remove elements for which the boxes or masks that have zero area
if "boxes" in target or "masks" in target:
# favor boxes selection when defining which elements to keep
# this is compatible with previous implementation
if "boxes" in target:
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target['masks'].flatten(1).any(1)
for field in fields:
target[field] = target[field][keep]
return cropped_image, target
def hflip(image, target):
flipped_image = F.hflip(image)
w, h = image.size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
target["boxes"] = boxes
if "masks" in target:
target['masks'] = target['masks'].flip(-1)
return flipped_image, target
def resize(image, target, size, max_size=None):
# size can be min_size (scalar) or (w, h) tuple
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
size = get_size(image.size, size, max_size)
rescaled_image = F.resize(image, size)
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
ratio_width, ratio_height = ratios
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
h, w = size
target["size"] = torch.tensor([h, w])
if "masks" in target:
target['masks'] = interpolate(
target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
return rescaled_image, target
def pad(image, target, padding):
# assumes that we only pad on the bottom right corners
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
if target is None:
return padded_image, None
target = target.copy()
# should we do something wrt the original size?
target["size"] = torch.tensor(padded_image[::-1])
if "masks" in target:
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
return padded_image, target
class MOTHSV:
def __init__(self, hgain=5, sgain=30, vgain=30) -> None:
self.hgain = hgain
self.sgain = sgain
self.vgain = vgain
def __call__(self, imgs: list, targets: list):
hsv_augs = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] # random gains
hsv_augs *= np.random.randint(0, 2, 3) # random selection of h, s, v
hsv_augs = hsv_augs.astype(np.int16)
for i in range(len(imgs)):
img = np.array(imgs[i])
img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.int16)
img_hsv[..., 0] = (img_hsv[..., 0] + hsv_augs[0]) % 180
img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_augs[1], 0, 255)
img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_augs[2], 0, 255)
imgs[i] = cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2RGB) # no return needed
return imgs, targets
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
region = T.RandomCrop.get_params(img, self.size)
return crop(img, target, region)
class MotRandomCrop(RandomCrop):
def __call__(self, imgs: list, targets: list):
ret_imgs = []
ret_targets = []
region = T.RandomCrop.get_params(imgs[0], self.size)
for img_i, targets_i in zip(imgs, targets):
img_i, targets_i = crop(img_i, targets_i, region)
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
class FixedMotRandomCrop(object):
def __init__(self, min_size: int, max_size: int):
self.min_size = min_size
self.max_size = max_size
def __call__(self, imgs: list, targets: list):
ret_imgs = []
ret_targets = []
w = random.randint(self.min_size, min(imgs[0].width, self.max_size))
h = random.randint(self.min_size, min(imgs[0].height, self.max_size))
region = T.RandomCrop.get_params(imgs[0], [h, w])
for img_i, targets_i in zip(imgs, targets):
img_i, targets_i = crop_mot(img_i, targets_i, region)
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
class MotRandomShift(object):
def __init__(self, bs=1):
self.bs = bs
def __call__(self, imgs: list, targets: list):
ret_imgs = copy.deepcopy(imgs)
ret_targets = copy.deepcopy(targets)
n_frames = len(imgs)
select_i = random.choice(list(range(n_frames)))
w, h = imgs[select_i].size
xshift = (100 * torch.rand(self.bs)).int()
xshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
yshift = (100 * torch.rand(self.bs)).int()
yshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
ymin = max(0, -yshift[0])
ymax = min(h, h - yshift[0])
xmin = max(0, -xshift[0])
xmax = min(w, w - xshift[0])
region = (int(ymin), int(xmin), int(ymax-ymin), int(xmax-xmin))
ret_imgs[select_i], ret_targets[select_i] = random_shift(imgs[select_i], targets[select_i], region, (h,w))
return ret_imgs, ret_targets
class FixedMotRandomShift(object):
def __init__(self, bs=1, padding=50):
self.bs = bs
self.padding = padding
def __call__(self, imgs: list, targets: list):
ret_imgs = []
ret_targets = []
n_frames = self.bs
w, h = imgs[0].size
xshift = (self.padding * torch.rand(self.bs)).int() + 1
xshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
yshift = (self.padding * torch.rand(self.bs)).int() + 1
yshift *= (torch.randn(self.bs) > 0.0).int() * 2 - 1
ret_imgs.append(imgs[0])
ret_targets.append(targets[0])
for i in range(1, n_frames):
ymin = max(0, -yshift[0])
ymax = min(h, h - yshift[0])
xmin = max(0, -xshift[0])
xmax = min(w, w - xshift[0])
prev_img = ret_imgs[i-1].copy()
prev_target = copy.deepcopy(ret_targets[i-1])
region = (int(ymin), int(xmin), int(ymax - ymin), int(xmax - xmin))
img_i, target_i = random_shift(prev_img, prev_target, region, (h, w))
ret_imgs.append(img_i)
ret_targets.append(target_i)
return ret_imgs, ret_targets
class RandomSizeCrop(object):
def __init__(self, min_size: int, max_size: int):
self.min_size = min_size
self.max_size = max_size
def __call__(self, img: PIL.Image.Image, target: dict):
w = random.randint(self.min_size, min(img.width, self.max_size))
h = random.randint(self.min_size, min(img.height, self.max_size))
region = T.RandomCrop.get_params(img, [h, w])
return crop(img, target, region)
class MotRandomSizeCrop(RandomSizeCrop):
def __call__(self, imgs, targets):
w = random.randint(self.min_size, min(imgs[0].width, self.max_size))
h = random.randint(self.min_size, min(imgs[0].height, self.max_size))
region = T.RandomCrop.get_params(imgs[0], [h, w])
ret_imgs = []
ret_targets = []
for img_i, targets_i in zip(imgs, targets):
img_i, targets_i = crop(img_i, targets_i, region)
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
image_width, image_height = img.size
crop_height, crop_width = self.size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
class MotCenterCrop(CenterCrop):
def __call__(self, imgs, targets):
image_width, image_height = imgs[0].size
crop_height, crop_width = self.size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
ret_imgs = []
ret_targets = []
for img_i, targets_i in zip(imgs, targets):
img_i, targets_i = crop(img_i, targets_i, (crop_top, crop_left, crop_height, crop_width))
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return hflip(img, target)
return img, target
class MotRandomHorizontalFlip(RandomHorizontalFlip):
def __call__(self, imgs, targets):
if random.random() < self.p:
ret_imgs = []
ret_targets = []
for img_i, targets_i in zip(imgs, targets):
img_i, targets_i = hflip(img_i, targets_i)
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
return imgs, targets
class RandomResize(object):
def __init__(self, sizes, max_size=None):
assert isinstance(sizes, (list, tuple))
self.sizes = sizes
self.max_size = max_size
def __call__(self, img, target=None):
size = random.choice(self.sizes)
return resize(img, target, size, self.max_size)
class MotRandomResize(RandomResize):
def __call__(self, imgs, targets):
size = random.choice(self.sizes)
ret_imgs = []
ret_targets = []
for img_i, targets_i in zip(imgs, targets):
img_i, targets_i = resize(img_i, targets_i, size, self.max_size)
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
class RandomPad(object):
def __init__(self, max_pad):
self.max_pad = max_pad
def __call__(self, img, target):
pad_x = random.randint(0, self.max_pad)
pad_y = random.randint(0, self.max_pad)
return pad(img, target, (pad_x, pad_y))
class MotRandomPad(RandomPad):
def __call__(self, imgs, targets):
pad_x = random.randint(0, self.max_pad)
pad_y = random.randint(0, self.max_pad)
ret_imgs = []
ret_targets = []
for img_i, targets_i in zip(imgs, targets):
img_i, target_i = pad(img_i, targets_i, (pad_x, pad_y))
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
class RandomSelect(object):
"""
Randomly selects between transforms1 and transforms2,
with probability p for transforms1 and (1 - p) for transforms2
"""
def __init__(self, transforms1, transforms2, p=0.5):
self.transforms1 = transforms1
self.transforms2 = transforms2
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return self.transforms1(img, target)
return self.transforms2(img, target)
class MotRandomSelect(RandomSelect):
"""
Randomly selects between transforms1 and transforms2,
with probability p for transforms1 and (1 - p) for transforms2
"""
def __call__(self, imgs, targets):
if random.random() < self.p:
return self.transforms1(imgs, targets)
return self.transforms2(imgs, targets)
class ToTensor(object):
def __call__(self, img, target):
return F.to_tensor(img), target
class MotToTensor(ToTensor):
def __call__(self, imgs, targets):
ret_imgs = []
for img in imgs:
ret_imgs.append(F.to_tensor(img))
return ret_imgs, targets
class RandomErasing(object):
def __init__(self, *args, **kwargs):
self.eraser = T.RandomErasing(*args, **kwargs)
def __call__(self, img, target):
return self.eraser(img), target
class MotRandomErasing(RandomErasing):
def __call__(self, imgs, targets):
# TODO: Rewrite this part to ensure the data augmentation is same to each image.
ret_imgs = []
for img_i, targets_i in zip(imgs, targets):
ret_imgs.append(self.eraser(img_i))
return ret_imgs, targets
class MoTColorJitter(T.ColorJitter):
def __call__(self, imgs, targets):
transform = self.get_params(self.brightness, self.contrast,
self.saturation, self.hue)
ret_imgs = []
for img_i, targets_i in zip(imgs, targets):
ret_imgs.append(transform(img_i))
return ret_imgs, targets
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, target=None):
if target is not None:
target['ori_img'] = image.clone()
image = F.normalize(image, mean=self.mean, std=self.std)
if target is None:
return image, None
target = target.copy()
h, w = image.shape[-2:]
if "boxes" in target:
boxes = target["boxes"]
boxes = box_xyxy_to_cxcywh(boxes)
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
target["boxes"] = boxes
return image, target
class MotNormalize(Normalize):
def __call__(self, imgs, targets=None):
ret_imgs = []
ret_targets = []
for i in range(len(imgs)):
img_i = imgs[i]
targets_i = targets[i] if targets is not None else None
img_i, targets_i = super().__call__(img_i, targets_i)
ret_imgs.append(img_i)
ret_targets.append(targets_i)
return ret_imgs, ret_targets
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
class MotCompose(Compose):
def __call__(self, imgs, targets):
for t in self.transforms:
imgs, targets = t(imgs, targets)
return imgs, targets
|