File size: 6,659 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.cnn import build_conv_layer, build_norm_layer
from ..builder import BACKBONES
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResLayer, ResNet
class Bottleneck(_Bottleneck):
"""Bottleneck block for ResNeXt.
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
groups (int): Groups of conv2.
width_per_group (int): Width per group of conv2. 64x4d indicates
``groups=64, width_per_group=4`` and 32x8d indicates
``groups=32, width_per_group=8``.
stride (int): stride of the block. Default: 1
dilation (int): dilation of convolution. Default: 1
downsample (nn.Module): downsample operation on identity branch.
Default: None
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
"""
def __init__(self,
in_channels,
out_channels,
base_channels=64,
groups=32,
width_per_group=4,
**kwargs):
super().__init__(in_channels, out_channels, **kwargs)
self.groups = groups
self.width_per_group = width_per_group
# For ResNet bottleneck, middle channels are determined by expansion
# and out_channels, but for ResNeXt bottleneck, it is determined by
# groups and width_per_group and the stage it is located in.
if groups != 1:
assert self.mid_channels % base_channels == 0
self.mid_channels = (
groups * width_per_group * self.mid_channels // base_channels)
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, self.mid_channels, postfix=1)
self.norm2_name, norm2 = build_norm_layer(
self.norm_cfg, self.mid_channels, postfix=2)
self.norm3_name, norm3 = build_norm_layer(
self.norm_cfg, self.out_channels, postfix=3)
self.conv1 = build_conv_layer(
self.conv_cfg,
self.in_channels,
self.mid_channels,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
self.conv_cfg,
self.mid_channels,
self.mid_channels,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
groups=groups,
bias=False)
self.add_module(self.norm2_name, norm2)
self.conv3 = build_conv_layer(
self.conv_cfg,
self.mid_channels,
self.out_channels,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
@BACKBONES.register_module()
class ResNeXt(ResNet):
"""ResNeXt backbone.
Please refer to the `paper <https://arxiv.org/abs/1611.05431>`__ for
details.
Args:
depth (int): Network depth, from {50, 101, 152}.
groups (int): Groups of conv2 in Bottleneck. Default: 32.
width_per_group (int): Width per group of conv2 in Bottleneck.
Default: 4.
in_channels (int): Number of input image channels. Default: 3.
stem_channels (int): Output channels of the stem layer. Default: 64.
num_stages (int): Stages of the network. Default: 4.
strides (Sequence[int]): Strides of the first block of each stage.
Default: ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Default: ``(1, 1, 1, 1)``.
out_indices (Sequence[int]): Output from which stages. If only one
stage is specified, a single tensor (feature map) is returned,
otherwise multiple stages are specified, a tuple of tensors will
be returned. Default: ``(3, )``.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
Default: False.
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Default: -1.
conv_cfg (dict | None): The config dict for conv layers. Default: None.
norm_cfg (dict): The config dict for norm layers.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: True.
Example:
>>> from mmpose.models import ResNeXt
>>> import torch
>>> self = ResNeXt(depth=50, out_indices=(0, 1, 2, 3))
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 256, 8, 8)
(1, 512, 4, 4)
(1, 1024, 2, 2)
(1, 2048, 1, 1)
"""
arch_settings = {
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3))
}
def __init__(self, depth, groups=32, width_per_group=4, **kwargs):
self.groups = groups
self.width_per_group = width_per_group
super().__init__(depth, **kwargs)
def make_res_layer(self, **kwargs):
return ResLayer(
groups=self.groups,
width_per_group=self.width_per_group,
base_channels=self.base_channels,
**kwargs)
|