File size: 21,759 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy as cp
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (ConvModule, MaxPool2d, constant_init, kaiming_init,
normal_init)
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
class RSB(nn.Module):
"""Residual Steps block for RSN. Paper ref: Cai et al. "Learning Delicate
Local Representations for Multi-Person Pose Estimation" (ECCV 2020).
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
num_steps (int): Numbers of steps in RSB
stride (int): stride of the block. Default: 1
downsample (nn.Module): downsample operation on identity branch.
Default: None.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
expand_times (int): Times by which the in_channels are expanded.
Default:26.
res_top_channels (int): Number of channels of feature output by
ResNet_top. Default:64.
"""
expansion = 1
def __init__(self,
in_channels,
out_channels,
num_steps=4,
stride=1,
downsample=None,
with_cp=False,
norm_cfg=dict(type='BN'),
expand_times=26,
res_top_channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
assert num_steps > 1
self.in_channels = in_channels
self.branch_channels = self.in_channels * expand_times
self.branch_channels //= res_top_channels
self.out_channels = out_channels
self.stride = stride
self.downsample = downsample
self.with_cp = with_cp
self.norm_cfg = norm_cfg
self.num_steps = num_steps
self.conv_bn_relu1 = ConvModule(
self.in_channels,
self.num_steps * self.branch_channels,
kernel_size=1,
stride=self.stride,
padding=0,
norm_cfg=self.norm_cfg,
inplace=False)
for i in range(self.num_steps):
for j in range(i + 1):
module_name = f'conv_bn_relu2_{i + 1}_{j + 1}'
self.add_module(
module_name,
ConvModule(
self.branch_channels,
self.branch_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=self.norm_cfg,
inplace=False))
self.conv_bn3 = ConvModule(
self.num_steps * self.branch_channels,
self.out_channels * self.expansion,
kernel_size=1,
stride=1,
padding=0,
act_cfg=None,
norm_cfg=self.norm_cfg,
inplace=False)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
"""Forward function."""
identity = x
x = self.conv_bn_relu1(x)
spx = torch.split(x, self.branch_channels, 1)
outputs = list()
outs = list()
for i in range(self.num_steps):
outputs_i = list()
outputs.append(outputs_i)
for j in range(i + 1):
if j == 0:
inputs = spx[i]
else:
inputs = outputs[i][j - 1]
if i > j:
inputs = inputs + outputs[i - 1][j]
module_name = f'conv_bn_relu2_{i + 1}_{j + 1}'
module_i_j = getattr(self, module_name)
outputs[i].append(module_i_j(inputs))
outs.append(outputs[i][i])
out = torch.cat(tuple(outs), 1)
out = self.conv_bn3(out)
if self.downsample is not None:
identity = self.downsample(identity)
out = out + identity
out = self.relu(out)
return out
class Downsample_module(nn.Module):
"""Downsample module for RSN.
Args:
block (nn.Module): Downsample block.
num_blocks (list): Number of blocks in each downsample unit.
num_units (int): Numbers of downsample units. Default: 4
has_skip (bool): Have skip connections from prior upsample
module or not. Default:False
num_steps (int): Number of steps in a block. Default:4
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
in_channels (int): Number of channels of the input feature to
downsample module. Default: 64
expand_times (int): Times by which the in_channels are expanded.
Default:26.
"""
def __init__(self,
block,
num_blocks,
num_steps=4,
num_units=4,
has_skip=False,
norm_cfg=dict(type='BN'),
in_channels=64,
expand_times=26):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.has_skip = has_skip
self.in_channels = in_channels
assert len(num_blocks) == num_units
self.num_blocks = num_blocks
self.num_units = num_units
self.num_steps = num_steps
self.norm_cfg = norm_cfg
self.layer1 = self._make_layer(
block,
in_channels,
num_blocks[0],
expand_times=expand_times,
res_top_channels=in_channels)
for i in range(1, num_units):
module_name = f'layer{i + 1}'
self.add_module(
module_name,
self._make_layer(
block,
in_channels * pow(2, i),
num_blocks[i],
stride=2,
expand_times=expand_times,
res_top_channels=in_channels))
def _make_layer(self,
block,
out_channels,
blocks,
stride=1,
expand_times=26,
res_top_channels=64):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = ConvModule(
self.in_channels,
out_channels * block.expansion,
kernel_size=1,
stride=stride,
padding=0,
norm_cfg=self.norm_cfg,
act_cfg=None,
inplace=True)
units = list()
units.append(
block(
self.in_channels,
out_channels,
num_steps=self.num_steps,
stride=stride,
downsample=downsample,
norm_cfg=self.norm_cfg,
expand_times=expand_times,
res_top_channels=res_top_channels))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
units.append(
block(
self.in_channels,
out_channels,
num_steps=self.num_steps,
expand_times=expand_times,
res_top_channels=res_top_channels))
return nn.Sequential(*units)
def forward(self, x, skip1, skip2):
out = list()
for i in range(self.num_units):
module_name = f'layer{i + 1}'
module_i = getattr(self, module_name)
x = module_i(x)
if self.has_skip:
x = x + skip1[i] + skip2[i]
out.append(x)
out.reverse()
return tuple(out)
class Upsample_unit(nn.Module):
"""Upsample unit for upsample module.
Args:
ind (int): Indicates whether to interpolate (>0) and whether to
generate feature map for the next hourglass-like module.
num_units (int): Number of units that form a upsample module. Along
with ind and gen_cross_conv, nm_units is used to decide whether
to generate feature map for the next hourglass-like module.
in_channels (int): Channel number of the skip-in feature maps from
the corresponding downsample unit.
unit_channels (int): Channel number in this unit. Default:256.
gen_skip: (bool): Whether or not to generate skips for the posterior
downsample module. Default:False
gen_cross_conv (bool): Whether to generate feature map for the next
hourglass-like module. Default:False
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
out_channels (in): Number of channels of feature output by upsample
module. Must equal to in_channels of downsample module. Default:64
"""
def __init__(self,
ind,
num_units,
in_channels,
unit_channels=256,
gen_skip=False,
gen_cross_conv=False,
norm_cfg=dict(type='BN'),
out_channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.num_units = num_units
self.norm_cfg = norm_cfg
self.in_skip = ConvModule(
in_channels,
unit_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
act_cfg=None,
inplace=True)
self.relu = nn.ReLU(inplace=True)
self.ind = ind
if self.ind > 0:
self.up_conv = ConvModule(
unit_channels,
unit_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
act_cfg=None,
inplace=True)
self.gen_skip = gen_skip
if self.gen_skip:
self.out_skip1 = ConvModule(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
inplace=True)
self.out_skip2 = ConvModule(
unit_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
inplace=True)
self.gen_cross_conv = gen_cross_conv
if self.ind == num_units - 1 and self.gen_cross_conv:
self.cross_conv = ConvModule(
unit_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
inplace=True)
def forward(self, x, up_x):
out = self.in_skip(x)
if self.ind > 0:
up_x = F.interpolate(
up_x,
size=(x.size(2), x.size(3)),
mode='bilinear',
align_corners=True)
up_x = self.up_conv(up_x)
out = out + up_x
out = self.relu(out)
skip1 = None
skip2 = None
if self.gen_skip:
skip1 = self.out_skip1(x)
skip2 = self.out_skip2(out)
cross_conv = None
if self.ind == self.num_units - 1 and self.gen_cross_conv:
cross_conv = self.cross_conv(out)
return out, skip1, skip2, cross_conv
class Upsample_module(nn.Module):
"""Upsample module for RSN.
Args:
unit_channels (int): Channel number in the upsample units.
Default:256.
num_units (int): Numbers of upsample units. Default: 4
gen_skip (bool): Whether to generate skip for posterior downsample
module or not. Default:False
gen_cross_conv (bool): Whether to generate feature map for the next
hourglass-like module. Default:False
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
out_channels (int): Number of channels of feature output by upsample
module. Must equal to in_channels of downsample module. Default:64
"""
def __init__(self,
unit_channels=256,
num_units=4,
gen_skip=False,
gen_cross_conv=False,
norm_cfg=dict(type='BN'),
out_channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.in_channels = list()
for i in range(num_units):
self.in_channels.append(RSB.expansion * out_channels * pow(2, i))
self.in_channels.reverse()
self.num_units = num_units
self.gen_skip = gen_skip
self.gen_cross_conv = gen_cross_conv
self.norm_cfg = norm_cfg
for i in range(num_units):
module_name = f'up{i + 1}'
self.add_module(
module_name,
Upsample_unit(
i,
self.num_units,
self.in_channels[i],
unit_channels,
self.gen_skip,
self.gen_cross_conv,
norm_cfg=self.norm_cfg,
out_channels=64))
def forward(self, x):
out = list()
skip1 = list()
skip2 = list()
cross_conv = None
for i in range(self.num_units):
module_i = getattr(self, f'up{i + 1}')
if i == 0:
outi, skip1_i, skip2_i, _ = module_i(x[i], None)
elif i == self.num_units - 1:
outi, skip1_i, skip2_i, cross_conv = module_i(x[i], out[i - 1])
else:
outi, skip1_i, skip2_i, _ = module_i(x[i], out[i - 1])
out.append(outi)
skip1.append(skip1_i)
skip2.append(skip2_i)
skip1.reverse()
skip2.reverse()
return out, skip1, skip2, cross_conv
class Single_stage_RSN(nn.Module):
"""Single_stage Residual Steps Network.
Args:
unit_channels (int): Channel number in the upsample units. Default:256.
num_units (int): Numbers of downsample/upsample units. Default: 4
gen_skip (bool): Whether to generate skip for posterior downsample
module or not. Default:False
gen_cross_conv (bool): Whether to generate feature map for the next
hourglass-like module. Default:False
has_skip (bool): Have skip connections from prior upsample
module or not. Default:False
num_steps (int): Number of steps in RSB. Default: 4
num_blocks (list): Number of blocks in each downsample unit.
Default: [2, 2, 2, 2] Note: Make sure num_units==len(num_blocks)
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
in_channels (int): Number of channels of the feature from ResNet_Top.
Default: 64.
expand_times (int): Times by which the in_channels are expanded in RSB.
Default:26.
"""
def __init__(self,
has_skip=False,
gen_skip=False,
gen_cross_conv=False,
unit_channels=256,
num_units=4,
num_steps=4,
num_blocks=[2, 2, 2, 2],
norm_cfg=dict(type='BN'),
in_channels=64,
expand_times=26):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
num_blocks = cp.deepcopy(num_blocks)
super().__init__()
assert len(num_blocks) == num_units
self.has_skip = has_skip
self.gen_skip = gen_skip
self.gen_cross_conv = gen_cross_conv
self.num_units = num_units
self.num_steps = num_steps
self.unit_channels = unit_channels
self.num_blocks = num_blocks
self.norm_cfg = norm_cfg
self.downsample = Downsample_module(RSB, num_blocks, num_steps,
num_units, has_skip, norm_cfg,
in_channels, expand_times)
self.upsample = Upsample_module(unit_channels, num_units, gen_skip,
gen_cross_conv, norm_cfg, in_channels)
def forward(self, x, skip1, skip2):
mid = self.downsample(x, skip1, skip2)
out, skip1, skip2, cross_conv = self.upsample(mid)
return out, skip1, skip2, cross_conv
class ResNet_top(nn.Module):
"""ResNet top for RSN.
Args:
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
channels (int): Number of channels of the feature output by ResNet_top.
"""
def __init__(self, norm_cfg=dict(type='BN'), channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.top = nn.Sequential(
ConvModule(
3,
channels,
kernel_size=7,
stride=2,
padding=3,
norm_cfg=norm_cfg,
inplace=True), MaxPool2d(kernel_size=3, stride=2, padding=1))
def forward(self, img):
return self.top(img)
@BACKBONES.register_module()
class RSN(BaseBackbone):
"""Residual Steps Network backbone. Paper ref: Cai et al. "Learning
Delicate Local Representations for Multi-Person Pose Estimation" (ECCV
2020).
Args:
unit_channels (int): Number of Channels in an upsample unit.
Default: 256
num_stages (int): Number of stages in a multi-stage RSN. Default: 4
num_units (int): NUmber of downsample/upsample units in a single-stage
RSN. Default: 4 Note: Make sure num_units == len(self.num_blocks)
num_blocks (list): Number of RSBs (Residual Steps Block) in each
downsample unit. Default: [2, 2, 2, 2]
num_steps (int): Number of steps in a RSB. Default:4
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
res_top_channels (int): Number of channels of feature from ResNet_top.
Default: 64.
expand_times (int): Times by which the in_channels are expanded in RSB.
Default:26.
Example:
>>> from mmpose.models import RSN
>>> import torch
>>> self = RSN(num_stages=2,num_units=2,num_blocks=[2,2])
>>> self.eval()
>>> inputs = torch.rand(1, 3, 511, 511)
>>> level_outputs = self.forward(inputs)
>>> for level_output in level_outputs:
... for feature in level_output:
... print(tuple(feature.shape))
...
(1, 256, 64, 64)
(1, 256, 128, 128)
(1, 256, 64, 64)
(1, 256, 128, 128)
"""
def __init__(self,
unit_channels=256,
num_stages=4,
num_units=4,
num_blocks=[2, 2, 2, 2],
num_steps=4,
norm_cfg=dict(type='BN'),
res_top_channels=64,
expand_times=26):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
num_blocks = cp.deepcopy(num_blocks)
super().__init__()
self.unit_channels = unit_channels
self.num_stages = num_stages
self.num_units = num_units
self.num_blocks = num_blocks
self.num_steps = num_steps
self.norm_cfg = norm_cfg
assert self.num_stages > 0
assert self.num_steps > 1
assert self.num_units > 1
assert self.num_units == len(self.num_blocks)
self.top = ResNet_top(norm_cfg=norm_cfg)
self.multi_stage_rsn = nn.ModuleList([])
for i in range(self.num_stages):
if i == 0:
has_skip = False
else:
has_skip = True
if i != self.num_stages - 1:
gen_skip = True
gen_cross_conv = True
else:
gen_skip = False
gen_cross_conv = False
self.multi_stage_rsn.append(
Single_stage_RSN(has_skip, gen_skip, gen_cross_conv,
unit_channels, num_units, num_steps,
num_blocks, norm_cfg, res_top_channels,
expand_times))
def forward(self, x):
"""Model forward function."""
out_feats = []
skip1 = None
skip2 = None
x = self.top(x)
for i in range(self.num_stages):
out, skip1, skip2, x = self.multi_stage_rsn[i](x, skip1, skip2)
out_feats.append(out)
return out_feats
def init_weights(self, pretrained=None):
"""Initialize model weights."""
for m in self.multi_stage_rsn.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
elif isinstance(m, nn.Linear):
normal_init(m, std=0.01)
for m in self.top.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
|