File size: 5,615 Bytes
2cd560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# --------------------------------------------------------
# High Resolution Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Rao Fu, RainbowSecret
# --------------------------------------------------------

import torch
import torch.nn as nn


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x, H, W):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class MlpDW(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        dw_act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1)
        self.act1 = act_layer()
        self.dw3x3 = nn.Conv2d(
            hidden_features,
            hidden_features,
            kernel_size=3,
            stride=1,
            groups=hidden_features,
            padding=1,
        )
        self.act2 = dw_act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1)
        self.drop = nn.Dropout(drop)

    def forward(self, x, H, W):
        B, N, C = x.shape

        if N == (H * W + 1):
            cls_tokens = x[:, 0, :]
            x_ = x[:, 1:, :].permute(0, 2, 1).contiguous().reshape(B, C, H, W)
        else:
            x_ = x.permute(0, 2, 1).contiguous().reshape(B, C, H, W)

        x_ = self.fc1(x_)
        x_ = self.act1(x_)
        x_ = self.dw3x3(x_)
        x_ = self.act2(x_)
        x_ = self.drop(x_)
        x_ = self.fc2(x_)
        x_ = self.drop(x_)
        x_ = x_.reshape(B, C, -1).permute(0, 2, 1).contiguous()

        if N == (H * W + 1):
            x = torch.cat((cls_tokens.unsqueeze(1), x_), dim=1)
        else:
            x = x_

        return x


class MlpDWBN(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        dw_act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1)
        self.act1 = act_layer()
        self.norm1 = nn.BatchNorm2d(hidden_features)
        self.dw3x3 = nn.Conv2d(
            hidden_features,
            hidden_features,
            kernel_size=3,
            stride=1,
            groups=hidden_features,
            padding=1,
        )
        self.act2 = dw_act_layer()
        self.norm2 = nn.BatchNorm2d(hidden_features)
        self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1)
        self.act3 = act_layer()
        self.norm3 = nn.BatchNorm2d(out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x, H, W):
        B, N, C = x.shape

        if N == (H * W + 1):
            cls_tokens = x[:, 0, :]
            x_ = x[:, 1:, :].permute(0, 2, 1).contiguous().reshape(B, C, H, W)
        else:
            x_ = x.permute(0, 2, 1).contiguous().reshape(B, C, H, W)

        x_ = self.fc1(x_)
        x_ = self.norm1(x_)
        x_ = self.act1(x_)
        x_ = self.dw3x3(x_)
        x_ = self.norm2(x_)
        x_ = self.act2(x_)
        x_ = self.drop(x_)
        x_ = self.fc2(x_)
        x_ = self.norm3(x_)
        x_ = self.act3(x_)
        x_ = self.drop(x_)
        x_ = x_.reshape(B, C, -1).permute(0, 2, 1).contiguous()

        if N == (H * W + 1):
            x = torch.cat((cls_tokens.unsqueeze(1), x_), dim=1)
        else:
            x = x_

        return x


class MlpDWBN2D(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        dw_act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1)
        self.act1 = act_layer()
        self.norm1 = nn.BatchNorm2d(hidden_features)
        self.dw3x3 = nn.Conv2d(
            hidden_features,
            hidden_features,
            kernel_size=3,
            stride=1,
            groups=hidden_features,
            padding=1,
        )
        self.act2 = dw_act_layer()
        self.norm2 = nn.BatchNorm2d(hidden_features)
        self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1)
        self.act3 = act_layer()
        self.norm3 = nn.BatchNorm2d(out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.norm1(x)
        x = self.act1(x)
        x = self.dw3x3(x)
        x = self.norm2(x)
        x = self.act2(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.norm3(x)
        x = self.act3(x)
        x = self.drop(x)
        return x