File size: 8,273 Bytes
2cd560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-research. All Rights Reserved.
# ------------------------------------------------------------------------

import math
import torch
from torch import nn

from util import box_ops
from models.structures import Boxes, Instances, pairwise_iou


def random_drop_tracks(track_instances: Instances, drop_probability: float) -> Instances:
    if drop_probability > 0 and len(track_instances) > 0:
        keep_idxes = torch.rand_like(track_instances.scores) > drop_probability
        track_instances = track_instances[keep_idxes]
    return track_instances


class QueryInteractionBase(nn.Module):
    def __init__(self, args, dim_in, hidden_dim, dim_out):
        super().__init__()
        self.args = args
        self._build_layers(args, dim_in, hidden_dim, dim_out)
        self._reset_parameters()

    def _build_layers(self, args, dim_in, hidden_dim, dim_out):
        raise NotImplementedError()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def _select_active_tracks(self, data: dict) -> Instances:
        raise NotImplementedError()

    def _update_track_embedding(self, track_instances):
        raise NotImplementedError()


class FFN(nn.Module):
    def __init__(self, d_model, d_ffn, dropout=0):
        super().__init__()
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = nn.ReLU(True)
        self.dropout1 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout2 = nn.Dropout(dropout)
        self.norm = nn.LayerNorm(d_model)

    def forward(self, tgt):
        tgt2 = self.linear2(self.dropout1(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm(tgt)
        return tgt


class QueryInteractionModule(QueryInteractionBase):
    def __init__(self, args, dim_in, hidden_dim, dim_out):
        raise NotImplementedError


class QueryInteractionModulev2(QueryInteractionBase):
    def __init__(self, args, dim_in, hidden_dim, dim_out):
        super().__init__(args, dim_in, hidden_dim, dim_out)
        self.random_drop = args.random_drop
        self.fp_ratio = args.fp_ratio
        self.update_query_pos = args.update_query_pos
        self.score_thr = 0.5

    def _build_layers(self, args, dim_in, hidden_dim, dim_out):
        dropout = args.merger_dropout

        self.self_attn = nn.MultiheadAttention(dim_in, 8, dropout)
        self.linear1 = nn.Linear(dim_in, hidden_dim)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(hidden_dim, dim_in)

        if args.update_query_pos:
            self.linear_pos1 = nn.Linear(dim_in, hidden_dim)
            self.linear_pos2 = nn.Linear(hidden_dim, dim_in)
            self.dropout_pos1 = nn.Dropout(dropout)
            self.dropout_pos2 = nn.Dropout(dropout)
            self.norm_pos = nn.LayerNorm(dim_in)

        self.linear_feat1 = nn.Linear(dim_in, hidden_dim)
        self.linear_feat2 = nn.Linear(hidden_dim, dim_in)
        self.dropout_feat1 = nn.Dropout(dropout)
        self.dropout_feat2 = nn.Dropout(dropout)
        self.norm_feat = nn.LayerNorm(dim_in)

        self.norm1 = nn.LayerNorm(dim_in)
        self.norm2 = nn.LayerNorm(dim_in)
        if args.update_query_pos:
            self.norm3 = nn.LayerNorm(dim_in)

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        if args.update_query_pos:
            self.dropout3 = nn.Dropout(dropout)
            self.dropout4 = nn.Dropout(dropout)

        self.activation = nn.ReLU(True)

    def _random_drop_tracks(self, track_instances: Instances) -> Instances:
        return random_drop_tracks(track_instances, self.random_drop)

    def _add_fp_tracks(self, track_instances: Instances, active_track_instances: Instances) -> Instances:
            inactive_instances = track_instances[track_instances.obj_idxes < 0]

            # add fp for each active track in a specific probability.
            fp_prob = torch.ones_like(active_track_instances.scores) * self.fp_ratio
            selected_active_track_instances = active_track_instances[torch.bernoulli(fp_prob).bool()]

            if len(inactive_instances) > 0 and len(selected_active_track_instances) > 0:
                num_fp = len(selected_active_track_instances)
                if num_fp >= len(inactive_instances):
                    fp_track_instances = inactive_instances
                else:
                    inactive_boxes = Boxes(box_ops.box_cxcywh_to_xyxy(inactive_instances.pred_boxes))
                    selected_active_boxes = Boxes(box_ops.box_cxcywh_to_xyxy(selected_active_track_instances.pred_boxes))
                    ious = pairwise_iou(inactive_boxes, selected_active_boxes)
                    # select the fp with the largest IoU for each active track.
                    fp_indexes = ious.max(dim=0).indices

                    # remove duplicate fp.
                    fp_indexes = torch.unique(fp_indexes)
                    fp_track_instances = inactive_instances[fp_indexes]

                merged_track_instances = Instances.cat([active_track_instances, fp_track_instances])
                return merged_track_instances

            return active_track_instances

    def _select_active_tracks(self, data: dict) -> Instances:
        track_instances: Instances = data['track_instances']
        if self.training:
            active_idxes = (track_instances.obj_idxes >= 0) | (track_instances.scores > 0.5)
            active_track_instances = track_instances[active_idxes]
            active_track_instances.obj_idxes[active_track_instances.iou <= 0.5] = -1
        else:
            active_track_instances = track_instances[track_instances.obj_idxes >= 0]

        return active_track_instances

    def _update_track_embedding(self, track_instances: Instances) -> Instances:
        is_pos = track_instances.scores > self.score_thr
        track_instances.ref_pts[is_pos] = track_instances.pred_boxes.detach().clone()[is_pos]

        out_embed = track_instances.output_embedding
        query_feat = track_instances.query_pos
        query_pos = pos2posemb(track_instances.ref_pts)
        q = k = query_pos + out_embed

        tgt = out_embed
        tgt2 = self.self_attn(q[:, None], k[:, None], value=tgt[:, None])[0][:, 0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        if self.update_query_pos:
            query_pos2 = self.linear_pos2(self.dropout_pos1(self.activation(self.linear_pos1(tgt))))
            query_pos = query_pos + self.dropout_pos2(query_pos2)
            query_pos = self.norm_pos(query_pos)
            track_instances.query_pos = query_pos

        query_feat2 = self.linear_feat2(self.dropout_feat1(self.activation(self.linear_feat1(tgt))))
        query_feat = query_feat + self.dropout_feat2(query_feat2)
        query_feat = self.norm_feat(query_feat)
        track_instances.query_pos[is_pos] = query_feat[is_pos]

        return track_instances

    def forward(self, data) -> Instances:
        active_track_instances = self._select_active_tracks(data)
        active_track_instances = self._update_track_embedding(active_track_instances)
        return active_track_instances


def pos2posemb(pos, num_pos_feats=64, temperature=10000):
    scale = 2 * math.pi
    pos = pos * scale
    dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)
    dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)
    posemb = pos[..., None] / dim_t
    posemb = torch.stack((posemb[..., 0::2].sin(), posemb[..., 1::2].cos()), dim=-1).flatten(-3)
    return posemb


def build(args, layer_name, dim_in, hidden_dim, dim_out):
    interaction_layers = {
        'QIM': QueryInteractionModule,
        'QIMv2': QueryInteractionModulev2,
    }
    assert layer_name in interaction_layers, 'invalid query interaction layer: {}'.format(layer_name)
    return interaction_layers[layer_name](args, dim_in, hidden_dim, dim_out)