|
|
|
import copy |
|
import logging |
|
|
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule, constant_init, kaiming_init |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from ..builder import BACKBONES |
|
from .base_backbone import BaseBackbone |
|
from .utils import InvertedResidual, load_checkpoint |
|
|
|
|
|
@BACKBONES.register_module() |
|
class MobileNetV3(BaseBackbone): |
|
"""MobileNetV3 backbone. |
|
|
|
Args: |
|
arch (str): Architecture of mobilnetv3, from {small, big}. |
|
Default: small. |
|
conv_cfg (dict): Config dict for convolution layer. |
|
Default: None, which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
out_indices (None or Sequence[int]): Output from which stages. |
|
Default: (-1, ), which means output tensors from final stage. |
|
frozen_stages (int): Stages to be frozen (all param fixed). |
|
Default: -1, which means not freezing any parameters. |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save |
|
some memory while slowing down the training speed. |
|
Default: False. |
|
""" |
|
|
|
|
|
arch_settings = { |
|
'small': [[3, 16, 16, True, 'ReLU', 2], |
|
[3, 72, 24, False, 'ReLU', 2], |
|
[3, 88, 24, False, 'ReLU', 1], |
|
[5, 96, 40, True, 'HSwish', 2], |
|
[5, 240, 40, True, 'HSwish', 1], |
|
[5, 240, 40, True, 'HSwish', 1], |
|
[5, 120, 48, True, 'HSwish', 1], |
|
[5, 144, 48, True, 'HSwish', 1], |
|
[5, 288, 96, True, 'HSwish', 2], |
|
[5, 576, 96, True, 'HSwish', 1], |
|
[5, 576, 96, True, 'HSwish', 1]], |
|
'big': [[3, 16, 16, False, 'ReLU', 1], |
|
[3, 64, 24, False, 'ReLU', 2], |
|
[3, 72, 24, False, 'ReLU', 1], |
|
[5, 72, 40, True, 'ReLU', 2], |
|
[5, 120, 40, True, 'ReLU', 1], |
|
[5, 120, 40, True, 'ReLU', 1], |
|
[3, 240, 80, False, 'HSwish', 2], |
|
[3, 200, 80, False, 'HSwish', 1], |
|
[3, 184, 80, False, 'HSwish', 1], |
|
[3, 184, 80, False, 'HSwish', 1], |
|
[3, 480, 112, True, 'HSwish', 1], |
|
[3, 672, 112, True, 'HSwish', 1], |
|
[5, 672, 160, True, 'HSwish', 1], |
|
[5, 672, 160, True, 'HSwish', 2], |
|
[5, 960, 160, True, 'HSwish', 1]] |
|
} |
|
|
|
def __init__(self, |
|
arch='small', |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
out_indices=(-1, ), |
|
frozen_stages=-1, |
|
norm_eval=False, |
|
with_cp=False): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super().__init__() |
|
assert arch in self.arch_settings |
|
for index in out_indices: |
|
if index not in range(-len(self.arch_settings[arch]), |
|
len(self.arch_settings[arch])): |
|
raise ValueError('the item in out_indices must in ' |
|
f'range(0, {len(self.arch_settings[arch])}). ' |
|
f'But received {index}') |
|
|
|
if frozen_stages not in range(-1, len(self.arch_settings[arch])): |
|
raise ValueError('frozen_stages must be in range(-1, ' |
|
f'{len(self.arch_settings[arch])}). ' |
|
f'But received {frozen_stages}') |
|
self.arch = arch |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
|
|
self.in_channels = 16 |
|
self.conv1 = ConvModule( |
|
in_channels=3, |
|
out_channels=self.in_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=dict(type='HSwish')) |
|
|
|
self.layers = self._make_layer() |
|
self.feat_dim = self.arch_settings[arch][-1][2] |
|
|
|
def _make_layer(self): |
|
layers = [] |
|
layer_setting = self.arch_settings[self.arch] |
|
for i, params in enumerate(layer_setting): |
|
(kernel_size, mid_channels, out_channels, with_se, act, |
|
stride) = params |
|
if with_se: |
|
se_cfg = dict( |
|
channels=mid_channels, |
|
ratio=4, |
|
act_cfg=(dict(type='ReLU'), dict(type='HSigmoid'))) |
|
else: |
|
se_cfg = None |
|
|
|
layer = InvertedResidual( |
|
in_channels=self.in_channels, |
|
out_channels=out_channels, |
|
mid_channels=mid_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
se_cfg=se_cfg, |
|
with_expand_conv=True, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=dict(type=act), |
|
with_cp=self.with_cp) |
|
self.in_channels = out_channels |
|
layer_name = f'layer{i + 1}' |
|
self.add_module(layer_name, layer) |
|
layers.append(layer_name) |
|
return layers |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = logging.getLogger() |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
kaiming_init(m) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
constant_init(m, 1) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
|
|
outs = [] |
|
for i, layer_name in enumerate(self.layers): |
|
layer = getattr(self, layer_name) |
|
x = layer(x) |
|
if i in self.out_indices or \ |
|
i - len(self.layers) in self.out_indices: |
|
outs.append(x) |
|
|
|
if len(outs) == 1: |
|
return outs[0] |
|
return tuple(outs) |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
for param in self.conv1.parameters(): |
|
param.requires_grad = False |
|
for i in range(1, self.frozen_stages + 1): |
|
layer = getattr(self, f'layer{i}') |
|
layer.eval() |
|
for param in layer.parameters(): |
|
param.requires_grad = False |
|
|
|
def train(self, mode=True): |
|
super().train(mode) |
|
self._freeze_stages() |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|