|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from mmcv.cnn import build_conv_layer, build_norm_layer |
|
|
|
from ..builder import BACKBONES |
|
from .resnet import Bottleneck as _Bottleneck |
|
from .resnet import ResLayer, ResNetV1d |
|
|
|
|
|
class RSoftmax(nn.Module): |
|
"""Radix Softmax module in ``SplitAttentionConv2d``. |
|
|
|
Args: |
|
radix (int): Radix of input. |
|
groups (int): Groups of input. |
|
""" |
|
|
|
def __init__(self, radix, groups): |
|
super().__init__() |
|
self.radix = radix |
|
self.groups = groups |
|
|
|
def forward(self, x): |
|
batch = x.size(0) |
|
if self.radix > 1: |
|
x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2) |
|
x = F.softmax(x, dim=1) |
|
x = x.reshape(batch, -1) |
|
else: |
|
x = torch.sigmoid(x) |
|
return x |
|
|
|
|
|
class SplitAttentionConv2d(nn.Module): |
|
"""Split-Attention Conv2d. |
|
|
|
Args: |
|
in_channels (int): Same as nn.Conv2d. |
|
out_channels (int): Same as nn.Conv2d. |
|
kernel_size (int | tuple[int]): Same as nn.Conv2d. |
|
stride (int | tuple[int]): Same as nn.Conv2d. |
|
padding (int | tuple[int]): Same as nn.Conv2d. |
|
dilation (int | tuple[int]): Same as nn.Conv2d. |
|
groups (int): Same as nn.Conv2d. |
|
radix (int): Radix of SpltAtConv2d. Default: 2 |
|
reduction_factor (int): Reduction factor of SplitAttentionConv2d. |
|
Default: 4. |
|
conv_cfg (dict): Config dict for convolution layer. Default: None, |
|
which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
radix=2, |
|
reduction_factor=4, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN')): |
|
super().__init__() |
|
inter_channels = max(in_channels * radix // reduction_factor, 32) |
|
self.radix = radix |
|
self.groups = groups |
|
self.channels = channels |
|
self.conv = build_conv_layer( |
|
conv_cfg, |
|
in_channels, |
|
channels * radix, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups * radix, |
|
bias=False) |
|
self.norm0_name, norm0 = build_norm_layer( |
|
norm_cfg, channels * radix, postfix=0) |
|
self.add_module(self.norm0_name, norm0) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.fc1 = build_conv_layer( |
|
None, channels, inter_channels, 1, groups=self.groups) |
|
self.norm1_name, norm1 = build_norm_layer( |
|
norm_cfg, inter_channels, postfix=1) |
|
self.add_module(self.norm1_name, norm1) |
|
self.fc2 = build_conv_layer( |
|
None, inter_channels, channels * radix, 1, groups=self.groups) |
|
self.rsoftmax = RSoftmax(radix, groups) |
|
|
|
@property |
|
def norm0(self): |
|
return getattr(self, self.norm0_name) |
|
|
|
@property |
|
def norm1(self): |
|
return getattr(self, self.norm1_name) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.norm0(x) |
|
x = self.relu(x) |
|
|
|
batch, rchannel = x.shape[:2] |
|
if self.radix > 1: |
|
splits = x.view(batch, self.radix, -1, *x.shape[2:]) |
|
gap = splits.sum(dim=1) |
|
else: |
|
gap = x |
|
gap = F.adaptive_avg_pool2d(gap, 1) |
|
gap = self.fc1(gap) |
|
|
|
gap = self.norm1(gap) |
|
gap = self.relu(gap) |
|
|
|
atten = self.fc2(gap) |
|
atten = self.rsoftmax(atten).view(batch, -1, 1, 1) |
|
|
|
if self.radix > 1: |
|
attens = atten.view(batch, self.radix, -1, *atten.shape[2:]) |
|
out = torch.sum(attens * splits, dim=1) |
|
else: |
|
out = atten * x |
|
return out.contiguous() |
|
|
|
|
|
class Bottleneck(_Bottleneck): |
|
"""Bottleneck block for ResNeSt. |
|
|
|
Args: |
|
in_channels (int): Input channels of this block. |
|
out_channels (int): Output channels of this block. |
|
groups (int): Groups of conv2. |
|
width_per_group (int): Width per group of conv2. 64x4d indicates |
|
``groups=64, width_per_group=4`` and 32x8d indicates |
|
``groups=32, width_per_group=8``. |
|
radix (int): Radix of SpltAtConv2d. Default: 2 |
|
reduction_factor (int): Reduction factor of SplitAttentionConv2d. |
|
Default: 4. |
|
avg_down_stride (bool): Whether to use average pool for stride in |
|
Bottleneck. Default: True. |
|
stride (int): stride of the block. Default: 1 |
|
dilation (int): dilation of convolution. Default: 1 |
|
downsample (nn.Module): downsample operation on identity branch. |
|
Default: None |
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two |
|
layer is the 3x3 conv layer, otherwise the stride-two layer is |
|
the first 1x1 conv layer. |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
Default: None |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='BN') |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
groups=1, |
|
width_per_group=4, |
|
base_channels=64, |
|
radix=2, |
|
reduction_factor=4, |
|
avg_down_stride=True, |
|
**kwargs): |
|
super().__init__(in_channels, out_channels, **kwargs) |
|
|
|
self.groups = groups |
|
self.width_per_group = width_per_group |
|
|
|
|
|
|
|
|
|
if groups != 1: |
|
assert self.mid_channels % base_channels == 0 |
|
self.mid_channels = ( |
|
groups * width_per_group * self.mid_channels // base_channels) |
|
|
|
self.avg_down_stride = avg_down_stride and self.conv2_stride > 1 |
|
|
|
self.norm1_name, norm1 = build_norm_layer( |
|
self.norm_cfg, self.mid_channels, postfix=1) |
|
self.norm3_name, norm3 = build_norm_layer( |
|
self.norm_cfg, self.out_channels, postfix=3) |
|
|
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
self.in_channels, |
|
self.mid_channels, |
|
kernel_size=1, |
|
stride=self.conv1_stride, |
|
bias=False) |
|
self.add_module(self.norm1_name, norm1) |
|
self.conv2 = SplitAttentionConv2d( |
|
self.mid_channels, |
|
self.mid_channels, |
|
kernel_size=3, |
|
stride=1 if self.avg_down_stride else self.conv2_stride, |
|
padding=self.dilation, |
|
dilation=self.dilation, |
|
groups=groups, |
|
radix=radix, |
|
reduction_factor=reduction_factor, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg) |
|
delattr(self, self.norm2_name) |
|
|
|
if self.avg_down_stride: |
|
self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1) |
|
|
|
self.conv3 = build_conv_layer( |
|
self.conv_cfg, |
|
self.mid_channels, |
|
self.out_channels, |
|
kernel_size=1, |
|
bias=False) |
|
self.add_module(self.norm3_name, norm3) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.norm1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
|
|
if self.avg_down_stride: |
|
out = self.avd_layer(out) |
|
|
|
out = self.conv3(out) |
|
out = self.norm3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
|
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNeSt(ResNetV1d): |
|
"""ResNeSt backbone. |
|
|
|
Please refer to the `paper <https://arxiv.org/pdf/2004.08955.pdf>`__ |
|
for details. |
|
|
|
Args: |
|
depth (int): Network depth, from {50, 101, 152, 200}. |
|
groups (int): Groups of conv2 in Bottleneck. Default: 32. |
|
width_per_group (int): Width per group of conv2 in Bottleneck. |
|
Default: 4. |
|
radix (int): Radix of SpltAtConv2d. Default: 2 |
|
reduction_factor (int): Reduction factor of SplitAttentionConv2d. |
|
Default: 4. |
|
avg_down_stride (bool): Whether to use average pool for stride in |
|
Bottleneck. Default: True. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
stem_channels (int): Output channels of the stem layer. Default: 64. |
|
num_stages (int): Stages of the network. Default: 4. |
|
strides (Sequence[int]): Strides of the first block of each stage. |
|
Default: ``(1, 2, 2, 2)``. |
|
dilations (Sequence[int]): Dilation of each stage. |
|
Default: ``(1, 1, 1, 1)``. |
|
out_indices (Sequence[int]): Output from which stages. If only one |
|
stage is specified, a single tensor (feature map) is returned, |
|
otherwise multiple stages are specified, a tuple of tensors will |
|
be returned. Default: ``(3, )``. |
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two |
|
layer is the 3x3 conv layer, otherwise the stride-two layer is |
|
the first 1x1 conv layer. |
|
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. |
|
Default: False. |
|
avg_down (bool): Use AvgPool instead of stride conv when |
|
downsampling in the bottleneck. Default: False. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. Default: -1. |
|
conv_cfg (dict | None): The config dict for conv layers. Default: None. |
|
norm_cfg (dict): The config dict for norm layers. |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
zero_init_residual (bool): Whether to use zero init for last norm layer |
|
in resblocks to let them behave as identity. Default: True. |
|
""" |
|
|
|
arch_settings = { |
|
50: (Bottleneck, (3, 4, 6, 3)), |
|
101: (Bottleneck, (3, 4, 23, 3)), |
|
152: (Bottleneck, (3, 8, 36, 3)), |
|
200: (Bottleneck, (3, 24, 36, 3)), |
|
269: (Bottleneck, (3, 30, 48, 8)) |
|
} |
|
|
|
def __init__(self, |
|
depth, |
|
groups=1, |
|
width_per_group=4, |
|
radix=2, |
|
reduction_factor=4, |
|
avg_down_stride=True, |
|
**kwargs): |
|
self.groups = groups |
|
self.width_per_group = width_per_group |
|
self.radix = radix |
|
self.reduction_factor = reduction_factor |
|
self.avg_down_stride = avg_down_stride |
|
super().__init__(depth=depth, **kwargs) |
|
|
|
def make_res_layer(self, **kwargs): |
|
return ResLayer( |
|
groups=self.groups, |
|
width_per_group=self.width_per_group, |
|
base_channels=self.base_channels, |
|
radix=self.radix, |
|
reduction_factor=self.reduction_factor, |
|
avg_down_stride=self.avg_down_stride, |
|
**kwargs) |
|
|