|
/*! |
|
************************************************************************************************** |
|
* Deformable DETR |
|
* Copyright (c) 2020 SenseTime. All Rights Reserved. |
|
* Licensed under the Apache License, Version 2.0 [see LICENSE for details] |
|
************************************************************************************************** |
|
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 |
|
************************************************************************************************** |
|
*/ |
|
|
|
#include <vector> |
|
#include "cuda/ms_deform_im2col_cuda.cuh" |
|
|
|
#include <ATen/ATen.h> |
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <cuda.h> |
|
#include <cuda_runtime.h> |
|
|
|
|
|
at::Tensor ms_deform_attn_cuda_forward( |
|
const at::Tensor &value, |
|
const at::Tensor &spatial_shapes, |
|
const at::Tensor &level_start_index, |
|
const at::Tensor &sampling_loc, |
|
const at::Tensor &attn_weight, |
|
const int im2col_step) |
|
{ |
|
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); |
|
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); |
|
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); |
|
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); |
|
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); |
|
|
|
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); |
|
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); |
|
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); |
|
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); |
|
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); |
|
|
|
const int batch = value.size(0); |
|
const int spatial_size = value.size(1); |
|
const int num_heads = value.size(2); |
|
const int channels = value.size(3); |
|
|
|
const int num_levels = spatial_shapes.size(0); |
|
|
|
const int num_query = sampling_loc.size(1); |
|
const int num_point = sampling_loc.size(4); |
|
|
|
const int im2col_step_ = std::min(batch, im2col_step); |
|
|
|
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); |
|
|
|
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options()); |
|
|
|
const int batch_n = im2col_step_; |
|
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); |
|
auto per_value_size = spatial_size * num_heads * channels; |
|
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; |
|
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; |
|
for (int n = 0; n < batch/im2col_step_; ++n) |
|
{ |
|
auto columns = output_n.select(0, n); |
|
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] { |
|
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(), |
|
value.data<scalar_t>() + n * im2col_step_ * per_value_size, |
|
spatial_shapes.data<int64_t>(), |
|
level_start_index.data<int64_t>(), |
|
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, |
|
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size, |
|
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, |
|
columns.data<scalar_t>()); |
|
|
|
})); |
|
} |
|
|
|
output = output.view({batch, num_query, num_heads*channels}); |
|
|
|
return output; |
|
} |
|
|
|
|
|
std::vector<at::Tensor> ms_deform_attn_cuda_backward( |
|
const at::Tensor &value, |
|
const at::Tensor &spatial_shapes, |
|
const at::Tensor &level_start_index, |
|
const at::Tensor &sampling_loc, |
|
const at::Tensor &attn_weight, |
|
const at::Tensor &grad_output, |
|
const int im2col_step) |
|
{ |
|
|
|
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); |
|
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); |
|
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); |
|
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); |
|
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); |
|
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous"); |
|
|
|
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); |
|
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); |
|
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); |
|
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); |
|
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); |
|
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor"); |
|
|
|
const int batch = value.size(0); |
|
const int spatial_size = value.size(1); |
|
const int num_heads = value.size(2); |
|
const int channels = value.size(3); |
|
|
|
const int num_levels = spatial_shapes.size(0); |
|
|
|
const int num_query = sampling_loc.size(1); |
|
const int num_point = sampling_loc.size(4); |
|
|
|
const int im2col_step_ = std::min(batch, im2col_step); |
|
|
|
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); |
|
|
|
auto grad_value = at::zeros_like(value); |
|
auto grad_sampling_loc = at::zeros_like(sampling_loc); |
|
auto grad_attn_weight = at::zeros_like(attn_weight); |
|
|
|
const int batch_n = im2col_step_; |
|
auto per_value_size = spatial_size * num_heads * channels; |
|
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; |
|
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; |
|
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); |
|
|
|
for (int n = 0; n < batch/im2col_step_; ++n) |
|
{ |
|
auto grad_output_g = grad_output_n.select(0, n); |
|
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] { |
|
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(), |
|
grad_output_g.data<scalar_t>(), |
|
value.data<scalar_t>() + n * im2col_step_ * per_value_size, |
|
spatial_shapes.data<int64_t>(), |
|
level_start_index.data<int64_t>(), |
|
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, |
|
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size, |
|
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, |
|
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size, |
|
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, |
|
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size); |
|
|
|
})); |
|
} |
|
|
|
return { |
|
grad_value, grad_sampling_loc, grad_attn_weight |
|
}; |
|
} |