mart9992's picture
m
2cd560a
import torch
import torch.nn as nn
from torch.nn import functional as F
from nets.module import PositionNet, HandRotationNet, FaceRegressor, BoxNet, HandRoI, BodyRotationNet
from utils.human_models import smpl_x
from utils.transforms import rot6d_to_axis_angle, restore_bbox
from config import cfg
import math
import copy
from mmpose.models import build_posenet
from mmcv import Config
class Model(nn.Module):
def __init__(self, encoder, body_position_net, body_rotation_net, box_net, hand_position_net, hand_roi_net,
hand_rotation_net, face_regressor):
super(Model, self).__init__()
# body
self.backbone = encoder
self.body_position_net = body_position_net
self.body_rotation_net = body_rotation_net
self.box_net = box_net
# hand
self.hand_roi_net = hand_roi_net
self.hand_position_net = hand_position_net
self.hand_rotation_net = hand_rotation_net
# face
self.face_regressor = face_regressor
self.smplx_layer = copy.deepcopy(smpl_x.layer['neutral']).cuda()
self.body_num_joints = len(smpl_x.pos_joint_part['body'])
self.hand_joint_num = len(smpl_x.pos_joint_part['rhand'])
def get_camera_trans(self, cam_param):
# camera translation
t_xy = cam_param[:, :2]
gamma = torch.sigmoid(cam_param[:, 2]) # apply sigmoid to make it positive
k_value = torch.FloatTensor([math.sqrt(cfg.focal[0] * cfg.focal[1] * cfg.camera_3d_size * cfg.camera_3d_size / (
cfg.input_body_shape[0] * cfg.input_body_shape[1]))]).cuda().view(-1)
t_z = k_value * gamma
cam_trans = torch.cat((t_xy, t_z[:, None]), 1)
return cam_trans
def get_coord(self, root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose, shape, expr, cam_trans, mode):
batch_size = root_pose.shape[0]
zero_pose = torch.zeros((1, 3)).float().cuda().repeat(batch_size, 1) # eye poses
output = self.smplx_layer(betas=shape, body_pose=body_pose, global_orient=root_pose, right_hand_pose=rhand_pose,
left_hand_pose=lhand_pose, jaw_pose=jaw_pose, leye_pose=zero_pose,
reye_pose=zero_pose, expression=expr)
# camera-centered 3D coordinate
vertices = output.vertices
# root-relative 3D coordinates
mesh_cam = vertices + cam_trans[:, None, :] # for rendering
return mesh_cam
def forward(self, inputs, mode):
# backbone
body_img = F.interpolate(inputs['img'], cfg.input_body_shape)
# 1. Encoder
img_feat, task_tokens = self.backbone(body_img) # task_token:[bs, N, c]
shape_token, cam_token, expr_token, jaw_pose_token, hand_token, body_pose_token = \
task_tokens[:, 0], task_tokens[:, 1], task_tokens[:, 2], task_tokens[:, 3], task_tokens[:,
4:6], task_tokens[:, 6:]
# 2. Body Regressor
body_joint_hm, body_joint_img = self.body_position_net(img_feat)
root_pose, body_pose, shape, cam_param, = self.body_rotation_net(body_pose_token, shape_token, cam_token,
body_joint_img.detach())
root_pose = rot6d_to_axis_angle(root_pose)
body_pose = rot6d_to_axis_angle(body_pose.reshape(-1, 6)).reshape(body_pose.shape[0], -1) # (N, J_R*3)
cam_trans = self.get_camera_trans(cam_param)
# 3. Hand and Face BBox Estimation
lhand_bbox_center, lhand_bbox_size, rhand_bbox_center, rhand_bbox_size, face_bbox_center, face_bbox_size = self.box_net(
img_feat, body_joint_hm.detach())
lhand_bbox = restore_bbox(lhand_bbox_center, lhand_bbox_size, cfg.input_hand_shape[1] / cfg.input_hand_shape[0],
2.0).detach() # xyxy in (cfg.input_body_shape[1], cfg.input_body_shape[0]) space
rhand_bbox = restore_bbox(rhand_bbox_center, rhand_bbox_size, cfg.input_hand_shape[1] / cfg.input_hand_shape[0],
2.0).detach() # xyxy in (cfg.input_body_shape[1], cfg.input_body_shape[0]) space
# 4. Differentiable Feature-level Hand Crop-Upsample
# hand_feat: list, [bsx2, c, cfg.output_hm_shape[1]*scale, cfg.output_hm_shape[2]*scale]
hand_feat = self.hand_roi_net(img_feat, lhand_bbox, rhand_bbox) # hand_feat: flipped left hand + right hand
# 5. Hand/Face Regressor
# hand regressor
_, hand_joint_img = self.hand_position_net(hand_feat) # (2N, J_P, 3)
hand_pose = self.hand_rotation_net(hand_feat, hand_joint_img.detach())
hand_pose = rot6d_to_axis_angle(hand_pose.reshape(-1, 6)).reshape(hand_feat.shape[0], -1) # (2N, J_R*3)
batch_size = hand_pose.shape[0] // 2
lhand_pose = hand_pose[:batch_size, :].reshape(-1, len(smpl_x.orig_joint_part['lhand']), 3)
lhand_pose = torch.cat((lhand_pose[:, :, 0:1], -lhand_pose[:, :, 1:3]), 2).view(batch_size, -1)
rhand_pose = hand_pose[batch_size:, :]
# hand regressor
expr, jaw_pose = self.face_regressor(expr_token, jaw_pose_token)
jaw_pose = rot6d_to_axis_angle(jaw_pose)
# final output
mesh_cam = self.get_coord(root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose, shape,
expr, cam_trans, mode)
# test output
out = {}
out['smplx_mesh_cam'] = mesh_cam
return out
def init_weights(m):
try:
if type(m) == nn.ConvTranspose2d:
nn.init.normal_(m.weight, std=0.001)
elif type(m) == nn.Conv2d:
nn.init.normal_(m.weight, std=0.001)
nn.init.constant_(m.bias, 0)
elif type(m) == nn.BatchNorm2d:
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
nn.init.constant_(m.bias, 0)
except AttributeError:
pass
def get_model():
# body
vit_cfg = Config.fromfile(cfg.encoder_config_file)
vit = build_posenet(vit_cfg.model)
body_position_net = PositionNet('body', feat_dim=cfg.feat_dim)
body_rotation_net = BodyRotationNet(feat_dim=cfg.feat_dim)
box_net = BoxNet(feat_dim=cfg.feat_dim)
# hand
hand_position_net = PositionNet('hand', feat_dim=cfg.feat_dim)
hand_roi_net = HandRoI(feat_dim=cfg.feat_dim, upscale=cfg.upscale)
hand_rotation_net = HandRotationNet('hand', feat_dim=cfg.feat_dim)
# face
face_regressor = FaceRegressor(feat_dim=cfg.feat_dim)
# scale
encoder = vit.backbone
model = Model(encoder, body_position_net, body_rotation_net, box_net, hand_position_net, hand_roi_net,
hand_rotation_net,
face_regressor)
return model