vierundvi / grounded_sam_demo.py
mart9992's picture
m
062a1ef
from GroundingDINO.groundingdino.datasets.transforms import Compose, RandomResize, ToTensor, Normalize
from io import BytesIO
import os
import copy
import numpy as np
import json
import torch
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import (
build_sam,
build_sam_hq,
SamPredictor
)
import cv2
import numpy as np
import matplotlib.pyplot as plt
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(
clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
return boxes_filt
def grounded_sam_demo(input_pil, config_file, grounded_checkpoint, sam_checkpoint,
text_prompt, box_threshold=0.3, text_threshold=0.25,
device="cuda"):
# Convert PIL image to tensor with normalization
transform = Compose([
RandomResize([800], max_size=1333),
ToTensor(),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
if input_pil.mode != "RGB":
input_pil = input_pil.convert("RGB")
image, _ = transform(input_pil, None)
# Load model
model = load_model(config_file, grounded_checkpoint, device=device)
# Get grounding dino model output
boxes_filt = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, device=device)
# Initialize SAM
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
image = cv2.cvtColor(np.array(input_pil), cv2.COLOR_RGB2BGR)
predictor.set_image(image)
size = input_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = predictor.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]).to(device)
masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(device),
multimask_output=False,
)
# Create mask image
value = 0 # 0 for background
mask_img = torch.zeros(masks.shape[-2:])
for idx, mask in enumerate(masks):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
fig = plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis('off')
buf = BytesIO()
plt.savefig(buf, format='png', bbox_inches="tight",
dpi=300, pad_inches=0.0)
buf.seek(0)
out_pil = Image.open(buf)
return out_pil