# ------------------------------------------------------------------------ # Copyright (c) 2022 megvii-research. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import torch.nn.functional as F from torch.autograd import Function from torch.autograd.function import once_differentiable import MultiScaleDeformableAttention as MSDA class MSDeformAttnFunction(Function): @staticmethod def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step): ctx.im2col_step = im2col_step output = MSDA.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step) ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) return output @staticmethod @once_differentiable def backward(ctx, grad_output): value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = \ MSDA.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights): # for debug and test only, # need to use cuda version instead N_, S_, M_, D_ = value.shape _, Lq_, M_, L_, P_, _ = sampling_locations.shape value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for lid_, (H_, W_) in enumerate(value_spatial_shapes): # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_) # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1) # N_*M_, D_, Lq_, P_ sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_, mode='bilinear', padding_mode='zeros', align_corners=False) sampling_value_list.append(sampling_value_l_) # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_) attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_) output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_) return output.transpose(1, 2).contiguous()