mart9992's picture
m
06ba6ce
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
_has_cookiecutter = True
except ImportError:
_has_cookiecutter = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def add_new_model_command_factory(args: Namespace):
return AddNewModelCommand(args.testing, args.testing_file, path=args.path)
class AddNewModelCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
add_new_model_parser = parser.add_parser("add-new-model")
add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode.")
add_new_model_parser.add_argument("--testing_file", type=str, help="Configuration file on which to run.")
add_new_model_parser.add_argument(
"--path", type=str, help="Path to cookiecutter. Should only be used for testing purposes."
)
add_new_model_parser.set_defaults(func=add_new_model_command_factory)
def __init__(self, testing: bool, testing_file: str, path=None, *args):
self._testing = testing
self._testing_file = testing_file
self._path = path
def run(self):
warnings.warn(
"The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. "
"It is not actively maintained anymore, so might give a result that won't pass all tests and quality "
"checks, you should use `transformers-cli add-new-model-like` instead."
)
if not _has_cookiecutter:
raise ImportError(
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
"the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n"
)
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
directories = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]]
if len(directories) > 0:
raise ValueError(
"Several directories starting with `cookiecutter-template-` in current working directory. "
"Please clean your directory by removing all folders starting with `cookiecutter-template-` or "
"change your working directory."
)
path_to_transformer_root = (
Path(__file__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent
)
path_to_cookiecutter = path_to_transformer_root / "templates" / "adding_a_new_model"
# Execute cookiecutter
if not self._testing:
cookiecutter(str(path_to_cookiecutter))
else:
with open(self._testing_file, "r") as configuration_file:
testing_configuration = json.load(configuration_file)
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path),
no_input=True,
extra_context=testing_configuration,
)
directory = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0]
# Retrieve configuration
with open(directory + "/configuration.json", "r") as configuration_file:
configuration = json.load(configuration_file)
lowercase_model_name = configuration["lowercase_modelname"]
generate_tensorflow_pytorch_and_flax = configuration["generate_tensorflow_pytorch_and_flax"]
os.remove(f"{directory}/configuration.json")
output_pytorch = "PyTorch" in generate_tensorflow_pytorch_and_flax
output_tensorflow = "TensorFlow" in generate_tensorflow_pytorch_and_flax
output_flax = "Flax" in generate_tensorflow_pytorch_and_flax
model_dir = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"
os.makedirs(model_dir, exist_ok=True)
os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}", exist_ok=True)
# Tests require submodules as they have parent imports
with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py", "w"):
pass
shutil.move(
f"{directory}/__init__.py",
f"{model_dir}/__init__.py",
)
shutil.move(
f"{directory}/configuration_{lowercase_model_name}.py",
f"{model_dir}/configuration_{lowercase_model_name}.py",
)
def remove_copy_lines(path):
with open(path, "r") as f:
lines = f.readlines()
with open(path, "w") as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(line)
if output_pytorch:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_{lowercase_model_name}.py",
f"{model_dir}/modeling_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py")
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_tf_{lowercase_model_name}.py",
f"{model_dir}/modeling_tf_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_tf_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py")
if output_flax:
if not self._testing:
remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py")
shutil.move(
f"{directory}/modeling_flax_{lowercase_model_name}.py",
f"{model_dir}/modeling_flax_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/test_modeling_flax_{lowercase_model_name}.py",
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py",
)
else:
os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py")
os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py")
shutil.move(
f"{directory}/{lowercase_model_name}.md",
f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md",
)
shutil.move(
f"{directory}/tokenization_{lowercase_model_name}.py",
f"{model_dir}/tokenization_{lowercase_model_name}.py",
)
shutil.move(
f"{directory}/tokenization_fast_{lowercase_model_name}.py",
f"{model_dir}/tokenization_{lowercase_model_name}_fast.py",
)
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(original_file: str, line_to_copy_below: str, lines_to_copy: List[str]):
# Create temp file
fh, abs_path = mkstemp()
line_found = False
with fdopen(fh, "w") as new_file:
with open(original_file) as old_file:
for line in old_file:
new_file.write(line)
if line_to_copy_below in line:
line_found = True
for line_to_copy in lines_to_copy:
new_file.write(line_to_copy)
if not line_found:
raise ValueError(f"Line {line_to_copy_below} was not found in file.")
# Copy the file permissions from the old file to the new file
copymode(original_file, abs_path)
# Remove original file
remove(original_file)
# Move new file
move(abs_path, original_file)
def skip_units(line):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(path_to_datafile):
with open(path_to_datafile) as datafile:
lines_to_copy = []
skip_file = False
skip_snippet = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
file_to_replace_in = line.split('"')[1]
skip_file = skip_units(line)
elif "# Below: " in line and "##" not in line:
line_to_copy_below = line.split('"')[1]
skip_snippet = skip_units(line)
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(file_to_replace_in, line_to_copy_below, lines_to_copy)
lines_to_copy = []
elif "# Replace with" in line and "##" not in line:
lines_to_copy = []
elif "##" not in line:
lines_to_copy.append(line)
remove(path_to_datafile)
replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py")
os.rmdir(directory)