File size: 2,619 Bytes
ac08e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
language:
- fa
base_model: openai/whisper-large
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_15_0
metrics:
- wer
model-index:
- name: Whisper large fa - marziye-A
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 15.0
type: mozilla-foundation/common_voice_15_0
config: fa
split: None
args: 'config: fa, split: test'
metrics:
- name: Wer
type: wer
value: 19.74175831429967
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large fa - marziye-A
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 15.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1571
- Wer: 19.7418
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.2189 | 0.1567 | 2000 | 0.2248 | 29.0575 |
| 0.1972 | 0.3134 | 4000 | 0.2035 | 25.1376 |
| 0.1906 | 0.4701 | 6000 | 0.1923 | 25.7159 |
| 0.1595 | 0.6268 | 8000 | 0.1806 | 22.4166 |
| 0.1747 | 0.7835 | 10000 | 0.1753 | 23.0041 |
| 0.1744 | 0.9402 | 12000 | 0.1709 | 22.4932 |
| 0.1357 | 1.0969 | 14000 | 0.1687 | 20.7782 |
| 0.1345 | 1.2536 | 16000 | 0.1646 | 21.3221 |
| 0.1362 | 1.4103 | 18000 | 0.1619 | 21.1082 |
| 0.121 | 1.5670 | 20000 | 0.1601 | 20.3781 |
| 0.1354 | 1.7237 | 22000 | 0.1587 | 19.8157 |
| 0.122 | 1.8804 | 24000 | 0.1571 | 19.7418 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
|