Update README
Browse files
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- kinokokoro/ichikara-instruction-003
|
5 |
+
language:
|
6 |
+
- ja
|
7 |
+
base_model:
|
8 |
+
- llm-jp/llm-jp-3-13b
|
9 |
+
library_name: transformers
|
10 |
+
tags:
|
11 |
+
- text-generation-inference
|
12 |
+
- transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
# Sample Use
|
16 |
+
```python
|
17 |
+
MODEL_DIR = os.path.join("model_dir")
|
18 |
+
|
19 |
+
def load_model():
|
20 |
+
print("モデルとトークナイザーを読み込み中...")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
MODEL_DIR,
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
device_map={"": 0}, # 明示的にGPU割り当て
|
26 |
+
use_cache=True, # キャッシュを有効化
|
27 |
+
).to('cuda') # 明示的にGPUへ
|
28 |
+
|
29 |
+
model.eval() # 評価モード
|
30 |
+
return model, tokenizer
|
31 |
+
|
32 |
+
def generate_predictions(model, tokenizer, input_file, output_file):
|
33 |
+
# バッチ処理の追加
|
34 |
+
BATCH_SIZE = 8 # バッチサイズの設定
|
35 |
+
|
36 |
+
print(f"入力ファイルを読み込み中: {input_file}")
|
37 |
+
tasks = []
|
38 |
+
with open(input_file, 'r', encoding='utf-8') as f:
|
39 |
+
for line in f:
|
40 |
+
tasks.append(json.loads(line))
|
41 |
+
|
42 |
+
results = []
|
43 |
+
print("推論を実行中...")
|
44 |
+
|
45 |
+
# バッチ処理
|
46 |
+
for i in tqdm(range(0, len(tasks), BATCH_SIZE)):
|
47 |
+
batch_tasks = tasks[i:i + BATCH_SIZE]
|
48 |
+
prompts = [f"入力: {task['input']}\n出力: " for task in batch_tasks]
|
49 |
+
|
50 |
+
# バッチでの推論
|
51 |
+
inputs = tokenizer(
|
52 |
+
prompts,
|
53 |
+
return_tensors="pt",
|
54 |
+
padding=True,
|
55 |
+
truncation=True,
|
56 |
+
max_length=512
|
57 |
+
).to('cuda')
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = model.generate(
|
61 |
+
inputs.input_ids,
|
62 |
+
max_length=512,
|
63 |
+
temperature=0.7,
|
64 |
+
do_sample=False,
|
65 |
+
repetition_penalty=1.2,
|
66 |
+
pad_token_id=tokenizer.pad_token_id,
|
67 |
+
num_return_sequences=1,
|
68 |
+
early_stopping=True, # 早期停止を有効化
|
69 |
+
use_cache=True # キャッシュを使用
|
70 |
+
)
|
71 |
+
|
72 |
+
# バッチ出力の処理
|
73 |
+
for j, output in enumerate(outputs):
|
74 |
+
generated_text = tokenizer.decode(output, skip_special_tokens=True)
|
75 |
+
output_text = generated_text.split("出力: ")[-1].strip()
|
76 |
+
|
77 |
+
results.append({
|
78 |
+
"task_id": batch_tasks[j]["task_id"],
|
79 |
+
"output": output_text
|
80 |
+
})
|
81 |
+
|
82 |
+
print(f"結果を保存中: {output_file}")
|
83 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
84 |
+
for result in results:
|
85 |
+
json.dump(result, f, ensure_ascii=False)
|
86 |
+
f.write('\n')
|
87 |
+
```
|