massimowww commited on
Commit
022583b
·
1 Parent(s): 6d9a433

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1753.43 +/- 78.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1578f93e2c2733eb65c7ee10bbd077162e299b262f22b4e8f0476fac1f322790
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc72c695e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc72c69670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc72c69700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc72c69790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcc72c69820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcc72c698b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc72c69940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc72c699d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcc72c69a60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc72c69af0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc72c69b80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc72c69c10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fcc72c655d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674031351130348275,
68
+ "learning_rate": 0.0007,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGECAz0lmUE/DAU6vvIpvz/xNqM/73zsvExeLD8fUbu90nXePlpbtD8XWOk/ukjsPpkppb9BNEI+8yaIvSnpXb/SjF4/ZmVvv22uSD+w7nU8W5e4Pw/BDb+3iIQ+/6mNPzRnjD98h7W/YK++PlJBFz+IIrM8GiUUPz119z0QodE/iLigPyyZ9rs04O8+rITovm8/vz6aLjdAmTX1P1k29D6GCKy/6mMjPfGjwz6Ez5a/9ruwPsn3iL6xSEk/xMrBuxH2uT8pYKu+OiorP0rAcT80Z4w/fIe1v2Cvvj5SQRc/kAlIP/xK1D5A8qo+qq4XQFpDbz90GAFA94vPPqoSmL8IIQ09jzNAP60ZVL++MPg8Fx3oviiY2T+DVkC/R5mkPdHnt77ujYu+4hlJPwsXdj1Tw+K+Lmm/v8WgXj+st8w9lWJpv8iCND9gr74+UkEXP42Ntz/+I/Y+dhCCPoDVWz+Ws14/TLEWvgnRfz8mO4e/kpNuvorwtT4Gnji/GN7XPYHyqz+DKQ6+F/INvyOaNT/ptgy/fxJTPwZpAj923TW/1yqNv88fjD73lpy7gKlOvpViab/IgjQ/YK++PlJBFz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAmzoo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU+xgPQAAAAAybADAAAAAAFD56j0AAAAAMn/nPwAAAACh3tU9AAAAAGnN+j8AAAAA70fxPQAAAAA2r+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiX3INgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGEzZL0AAAAA2cv2vwAAAAA7AII9AAAAALx9AEAAAAAA9ggEPgAAAAAS0/g/AAAAAFm+TbwAAAAA54EAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqC27YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICne8M9AAAAAHqw+L8AAAAAECSAPQAAAAAZD+A/AAAAAEZ3DL4AAAAAwJbnPwAAAACu8dg9AAAAAO6T+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXJEm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHPu2PQAAAADPVuS/AAAAAMFXxTwAAAAAQ7vePwAAAADhf7o8AAAAAJmz7T8AAAAAcfixPQAAAAC79P2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJy6WvvBrN6MAWyUTegDjAF0lEdApbctrhzeXXV9lChoBkdAnFK8ByS3b2gHTegDaAhHQKW7SsK9f1J1fZQoaAZHQJ5+Rm29cr1oB03oA2gIR0ClvZbWmP5pdX2UKGgGR0Cb3J92HLzPaAdN6ANoCEdApb3bJfYzznV9lChoBkdAnQk3r2QGOmgHTegDaAhHQKXCiucMEzR1fZQoaAZHQJvbxm8M/hVoB03oA2gIR0Clxtq7ZnL8dX2UKGgGR0CbgQqIacZtaAdN6ANoCEdApck8VFhG6XV9lChoBkdAnR/tKyv9tWgHTegDaAhHQKXJfh/Aj6h1fZQoaAZHQJsrMKBun/FoB03oA2gIR0Clzn2ilBQfdX2UKGgGR0CbDnNCZ4OdaAdN6ANoCEdApdLAMhHLBHV9lChoBkdAnJSTu8brC2gHTegDaAhHQKXVF6JIlMR1fZQoaAZHQJprVeAuqWFoB03oA2gIR0Cl1VeSbH6udX2UKGgGR0CbZTF5OafBaAdN6ANoCEdApdouq3mV7nV9lChoBkdAmGOfTkQwsWgHTegDaAhHQKXeTyBClad1fZQoaAZHQJlk+Lzf779oB03oA2gIR0Cl4JlN+LFXdX2UKGgGR0CZ+SSGahHtaAdN6ANoCEdApeDbKaG5+nV9lChoBkdAlvj4Qrc0tWgHTegDaAhHQKXlhruYx+N1fZQoaAZHQJnU5Z1V5rxoB03oA2gIR0Cl6YfXoTwldX2UKGgGR0CdMMwkPczqaAdN6ANoCEdApevKRKYiPnV9lChoBkdAmeF4RdyDI2gHTegDaAhHQKXsDuQZGax1fZQoaAZHQJtXzj6vaDhoB03oA2gIR0Cl8NkMspXqdX2UKGgGR0CZfWFy7wrlaAdN6ANoCEdApfTzzkIX03V9lChoBkdAnDHpiVjZtmgHTegDaAhHQKX3Mac7Qsx1fZQoaAZHQJu8XS0BwMpoB03oA2gIR0Cl93S2Yv38dX2UKGgGR0Cf66glnh86aAdN6ANoCEdApfwRrvb48HV9lChoBkdAmvAIKtxMnWgHTegDaAhHQKYAHICEHt51fZQoaAZHQJyAmS6lLvloB03oA2gIR0CmAmSdFvycdX2UKGgGR0CeDZj+rELqaAdN6ANoCEdApgKl7SiM53V9lChoBkdAngvXHNorWmgHTegDaAhHQKYHbSE12q11fZQoaAZHQJtewakyk9FoB03oA2gIR0CmC3cy31BddX2UKGgGR0Cd/01rZamoaAdN6ANoCEdApg26OzY29HV9lChoBkdAmv4dYSxqwmgHTegDaAhHQKYN+uNgjQl1fZQoaAZHQJzmlvGZNPBoB03oA2gIR0CmEqyvs7dSdX2UKGgGR0CbmsB0p3HJaAdN6ANoCEdApha3GGVRk3V9lChoBkdAnBNQp4KQaWgHTegDaAhHQKYZDg/keZJ1fZQoaAZHQJ+Lj1xsEaFoB03oA2gIR0CmGU/GVAzIdX2UKGgGR0CfIGqfOD8MaAdN6ANoCEdAph36kM1CPnV9lChoBkdAms5Md1dPcmgHTegDaAhHQKYiChvBJqZ1fZQoaAZHQJ/kYZEUj9poB03oA2gIR0CmJFP2GqPwdX2UKGgGR0CZA6zjm0VraAdN6ANoCEdApiSUnw5NoXV9lChoBkdAnykv1UVBU2gHTegDaAhHQKYpPpOerdZ1fZQoaAZHQJmufWpZOi5oB03oA2gIR0CmLUschkiEdX2UKGgGR0Ca0vHIIWxhaAdN6ANoCEdApi+eDcuannV9lChoBkdAnAQ7H2h7FGgHTegDaAhHQKYv3fG+9J11fZQoaAZHQJpCZu89Oh1oB03oA2gIR0CmNIiuU2UCdX2UKGgGR0CcVD1bJOnEaAdN6ANoCEdApjiKAMDwIHV9lChoBkdAntXTv7WNFWgHTegDaAhHQKY792ll9Sd1fZQoaAZHQJ4fFwJgLJFoB03oA2gIR0CmPG18stkGdX2UKGgGR0Ccsjyi22G7aAdN6ANoCEdApkRBW1c+q3V9lChoBkdAnK/6QRwqAmgHTegDaAhHQKZKymUGFBZ1fZQoaAZHQJ0z7YzzmOloB03oA2gIR0CmTRbSZ0CBdX2UKGgGR0CYlTxeb/fgaAdN6ANoCEdApk1Xh4t6HHV9lChoBkdAnFLbc0tRN2gHTegDaAhHQKZSH3SKFZh1fZQoaAZHQJ1vg8+zMRpoB03oA2gIR0CmVkjmr8zidX2UKGgGR0CcUOYGMXJpaAdN6ANoCEdApliRYs/Y8XV9lChoBkdAnfprU5MlC2gHTegDaAhHQKZY02xY7q91fZQoaAZHQJr6fnaFmFtoB03oA2gIR0CmXtNwrDqGdX2UKGgGR0Cegvab4Ju3aAdN6ANoCEdApmS0sMAmzHV9lChoBkdAoHebv7WNFWgHTegDaAhHQKZm+LJjlPt1fZQoaAZHQJyfPZYgaFVoB03oA2gIR0CmZznxz7uVdX2UKGgGR0CdYtuXNTtLaAdN6ANoCEdApmvgKneiz3V9lChoBkdAm/GigoPTX2gHTegDaAhHQKZv5EWIoE11fZQoaAZHQJw6soYvWYpoB03oA2gIR0CmcjH3Dej3dX2UKGgGR0Cf+hk3S8aoaAdN6ANoCEdApnJzL0SRKnV9lChoBkdAnd1e717IDGgHTegDaAhHQKZ3EaRZED11fZQoaAZHQJ3Uqg8KXv9oB03oA2gIR0CmexudPLxJdX2UKGgGR0CcFAxL0z0paAdN6ANoCEdApn1drwe/6HV9lChoBkdAm3g/Cl7+k2gHTegDaAhHQKZ9nronrpt1fZQoaAZHQJz5XavicXpoB03oA2gIR0Cmgj7w8W9EdX2UKGgGR0CZ18Q4CIUKaAdN6ANoCEdApoZZD1Gsm3V9lChoBkdAm8Rt2cJ+lWgHTegDaAhHQKaInmgam411fZQoaAZHQJ2h1tQ9A5doB03oA2gIR0CmiOG7J4jbdX2UKGgGR0CeXRJPZZjhaAdN6ANoCEdApo2BdGAkLXV9lChoBkdAm4T9lEqlQGgHTegDaAhHQKaRtH2h7E51fZQoaAZHQJoKhSZSeiBoB03oA2gIR0Cmk/Gx+rlvdX2UKGgGR0CcA6ZezD4yaAdN6ANoCEdAppQ0hHLA6HV9lChoBkdAm7dIMnZ00WgHTegDaAhHQKaY2vL5h0B1fZQoaAZHQJjVG+FlCkZoB03oA2gIR0CmnOiUPhAGdX2UKGgGR0CZSb1ZTyavaAdN6ANoCEdApp8wzWPLgXV9lChoBkdAnDhjRIBikWgHTegDaAhHQKafdAQg9vF1fZQoaAZHQJr2VDv3JxNoB03oA2gIR0CmpECGetjkdX2UKGgGR0CcIEakhzNmaAdN6ANoCEdApqhRAt4A0nV9lChoBkdAlajO+dsi0WgHTegDaAhHQKaqoxcmjTN1fZQoaAZHQJrFA9FF2FFoB03oA2gIR0CmqumkvboKdX2UKGgGR0CbZToZAIIGaAdN6ANoCEdApq+u801qFnV9lChoBkdAmVbAsoUi6mgHTegDaAhHQKaztlEqlP91fZQoaAZHQJwoBmSQo1FoB03oA2gIR0CmtfeSr5qNdX2UKGgGR0CcZhuLaVUuaAdN6ANoCEdAprY31UVBU3V9lChoBkdAmpK9Fz+3pmgHTegDaAhHQKa633LV4HJ1fZQoaAZHQJubPjcVQANoB03oA2gIR0CmvuzcynDSdX2UKGgGR0CbzRY4ACGOaAdN6ANoCEdApsE408/2TXV9lChoBkdAnN8QiJO32GgHTegDaAhHQKbBfLr5ZbJ1fZQoaAZHQJkhfiLl3hZoB03oA2gIR0CmxiKv/zasdX2UKGgGR0CZy0sgdOqOaAdN6ANoCEdApspCSTyJ9HV9lChoBkdAngiphKDkEWgHTegDaAhHQKbMg9vCMxZ1fZQoaAZHQJyByu4gA6xoB03oA2gIR0CmzMGDcuandX2UKGgGR0CcJXv60pmVaAdN6ANoCEdAptFmtbLU1HV9lChoBkdAmKxPexfOU2gHTegDaAhHQKbVbf779AJ1fZQoaAZHQJxPRtYSxqxoB03oA2gIR0Cm166Q3gk1dX2UKGgGR0CXuOYHxBmgaAdN6ANoCEdAptfvLq2SdXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 25000,
99
+ "n_steps": 20,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ba71154ef8af530e7ac5cfb2759039034cf2f15139c1448bcb49660a11ed60a
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7779801d1d3db67bac86117d18b8efe44bb84345f56580aea08cfe6436c39721
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc72c695e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc72c69670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc72c69700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc72c69790>", "_build": "<function ActorCriticPolicy._build at 0x7fcc72c69820>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc72c698b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc72c69940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc72c699d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc72c69a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc72c69af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc72c69b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc72c69c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc72c655d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674031351130348275, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGECAz0lmUE/DAU6vvIpvz/xNqM/73zsvExeLD8fUbu90nXePlpbtD8XWOk/ukjsPpkppb9BNEI+8yaIvSnpXb/SjF4/ZmVvv22uSD+w7nU8W5e4Pw/BDb+3iIQ+/6mNPzRnjD98h7W/YK++PlJBFz+IIrM8GiUUPz119z0QodE/iLigPyyZ9rs04O8+rITovm8/vz6aLjdAmTX1P1k29D6GCKy/6mMjPfGjwz6Ez5a/9ruwPsn3iL6xSEk/xMrBuxH2uT8pYKu+OiorP0rAcT80Z4w/fIe1v2Cvvj5SQRc/kAlIP/xK1D5A8qo+qq4XQFpDbz90GAFA94vPPqoSmL8IIQ09jzNAP60ZVL++MPg8Fx3oviiY2T+DVkC/R5mkPdHnt77ujYu+4hlJPwsXdj1Tw+K+Lmm/v8WgXj+st8w9lWJpv8iCND9gr74+UkEXP42Ntz/+I/Y+dhCCPoDVWz+Ws14/TLEWvgnRfz8mO4e/kpNuvorwtT4Gnji/GN7XPYHyqz+DKQ6+F/INvyOaNT/ptgy/fxJTPwZpAj923TW/1yqNv88fjD73lpy7gKlOvpViab/IgjQ/YK++PlJBFz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAmzoo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU+xgPQAAAAAybADAAAAAAFD56j0AAAAAMn/nPwAAAACh3tU9AAAAAGnN+j8AAAAA70fxPQAAAAA2r+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiX3INgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGEzZL0AAAAA2cv2vwAAAAA7AII9AAAAALx9AEAAAAAA9ggEPgAAAAAS0/g/AAAAAFm+TbwAAAAA54EAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqC27YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICne8M9AAAAAHqw+L8AAAAAECSAPQAAAAAZD+A/AAAAAEZ3DL4AAAAAwJbnPwAAAACu8dg9AAAAAO6T+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXJEm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHPu2PQAAAADPVuS/AAAAAMFXxTwAAAAAQ7vePwAAAADhf7o8AAAAAJmz7T8AAAAAcfixPQAAAAC79P2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJy6WvvBrN6MAWyUTegDjAF0lEdApbctrhzeXXV9lChoBkdAnFK8ByS3b2gHTegDaAhHQKW7SsK9f1J1fZQoaAZHQJ5+Rm29cr1oB03oA2gIR0ClvZbWmP5pdX2UKGgGR0Cb3J92HLzPaAdN6ANoCEdApb3bJfYzznV9lChoBkdAnQk3r2QGOmgHTegDaAhHQKXCiucMEzR1fZQoaAZHQJvbxm8M/hVoB03oA2gIR0Clxtq7ZnL8dX2UKGgGR0CbgQqIacZtaAdN6ANoCEdApck8VFhG6XV9lChoBkdAnR/tKyv9tWgHTegDaAhHQKXJfh/Aj6h1fZQoaAZHQJsrMKBun/FoB03oA2gIR0Clzn2ilBQfdX2UKGgGR0CbDnNCZ4OdaAdN6ANoCEdApdLAMhHLBHV9lChoBkdAnJSTu8brC2gHTegDaAhHQKXVF6JIlMR1fZQoaAZHQJprVeAuqWFoB03oA2gIR0Cl1VeSbH6udX2UKGgGR0CbZTF5OafBaAdN6ANoCEdApdouq3mV7nV9lChoBkdAmGOfTkQwsWgHTegDaAhHQKXeTyBClad1fZQoaAZHQJlk+Lzf779oB03oA2gIR0Cl4JlN+LFXdX2UKGgGR0CZ+SSGahHtaAdN6ANoCEdApeDbKaG5+nV9lChoBkdAlvj4Qrc0tWgHTegDaAhHQKXlhruYx+N1fZQoaAZHQJnU5Z1V5rxoB03oA2gIR0Cl6YfXoTwldX2UKGgGR0CdMMwkPczqaAdN6ANoCEdApevKRKYiPnV9lChoBkdAmeF4RdyDI2gHTegDaAhHQKXsDuQZGax1fZQoaAZHQJtXzj6vaDhoB03oA2gIR0Cl8NkMspXqdX2UKGgGR0CZfWFy7wrlaAdN6ANoCEdApfTzzkIX03V9lChoBkdAnDHpiVjZtmgHTegDaAhHQKX3Mac7Qsx1fZQoaAZHQJu8XS0BwMpoB03oA2gIR0Cl93S2Yv38dX2UKGgGR0Cf66glnh86aAdN6ANoCEdApfwRrvb48HV9lChoBkdAmvAIKtxMnWgHTegDaAhHQKYAHICEHt51fZQoaAZHQJyAmS6lLvloB03oA2gIR0CmAmSdFvycdX2UKGgGR0CeDZj+rELqaAdN6ANoCEdApgKl7SiM53V9lChoBkdAngvXHNorWmgHTegDaAhHQKYHbSE12q11fZQoaAZHQJtewakyk9FoB03oA2gIR0CmC3cy31BddX2UKGgGR0Cd/01rZamoaAdN6ANoCEdApg26OzY29HV9lChoBkdAmv4dYSxqwmgHTegDaAhHQKYN+uNgjQl1fZQoaAZHQJzmlvGZNPBoB03oA2gIR0CmEqyvs7dSdX2UKGgGR0CbmsB0p3HJaAdN6ANoCEdApha3GGVRk3V9lChoBkdAnBNQp4KQaWgHTegDaAhHQKYZDg/keZJ1fZQoaAZHQJ+Lj1xsEaFoB03oA2gIR0CmGU/GVAzIdX2UKGgGR0CfIGqfOD8MaAdN6ANoCEdAph36kM1CPnV9lChoBkdAms5Md1dPcmgHTegDaAhHQKYiChvBJqZ1fZQoaAZHQJ/kYZEUj9poB03oA2gIR0CmJFP2GqPwdX2UKGgGR0CZA6zjm0VraAdN6ANoCEdApiSUnw5NoXV9lChoBkdAnykv1UVBU2gHTegDaAhHQKYpPpOerdZ1fZQoaAZHQJmufWpZOi5oB03oA2gIR0CmLUschkiEdX2UKGgGR0Ca0vHIIWxhaAdN6ANoCEdApi+eDcuannV9lChoBkdAnAQ7H2h7FGgHTegDaAhHQKYv3fG+9J11fZQoaAZHQJpCZu89Oh1oB03oA2gIR0CmNIiuU2UCdX2UKGgGR0CcVD1bJOnEaAdN6ANoCEdApjiKAMDwIHV9lChoBkdAntXTv7WNFWgHTegDaAhHQKY792ll9Sd1fZQoaAZHQJ4fFwJgLJFoB03oA2gIR0CmPG18stkGdX2UKGgGR0Ccsjyi22G7aAdN6ANoCEdApkRBW1c+q3V9lChoBkdAnK/6QRwqAmgHTegDaAhHQKZKymUGFBZ1fZQoaAZHQJ0z7YzzmOloB03oA2gIR0CmTRbSZ0CBdX2UKGgGR0CYlTxeb/fgaAdN6ANoCEdApk1Xh4t6HHV9lChoBkdAnFLbc0tRN2gHTegDaAhHQKZSH3SKFZh1fZQoaAZHQJ1vg8+zMRpoB03oA2gIR0CmVkjmr8zidX2UKGgGR0CcUOYGMXJpaAdN6ANoCEdApliRYs/Y8XV9lChoBkdAnfprU5MlC2gHTegDaAhHQKZY02xY7q91fZQoaAZHQJr6fnaFmFtoB03oA2gIR0CmXtNwrDqGdX2UKGgGR0Cegvab4Ju3aAdN6ANoCEdApmS0sMAmzHV9lChoBkdAoHebv7WNFWgHTegDaAhHQKZm+LJjlPt1fZQoaAZHQJyfPZYgaFVoB03oA2gIR0CmZznxz7uVdX2UKGgGR0CdYtuXNTtLaAdN6ANoCEdApmvgKneiz3V9lChoBkdAm/GigoPTX2gHTegDaAhHQKZv5EWIoE11fZQoaAZHQJw6soYvWYpoB03oA2gIR0CmcjH3Dej3dX2UKGgGR0Cf+hk3S8aoaAdN6ANoCEdApnJzL0SRKnV9lChoBkdAnd1e717IDGgHTegDaAhHQKZ3EaRZED11fZQoaAZHQJ3Uqg8KXv9oB03oA2gIR0CmexudPLxJdX2UKGgGR0CcFAxL0z0paAdN6ANoCEdApn1drwe/6HV9lChoBkdAm3g/Cl7+k2gHTegDaAhHQKZ9nronrpt1fZQoaAZHQJz5XavicXpoB03oA2gIR0Cmgj7w8W9EdX2UKGgGR0CZ18Q4CIUKaAdN6ANoCEdApoZZD1Gsm3V9lChoBkdAm8Rt2cJ+lWgHTegDaAhHQKaInmgam411fZQoaAZHQJ2h1tQ9A5doB03oA2gIR0CmiOG7J4jbdX2UKGgGR0CeXRJPZZjhaAdN6ANoCEdApo2BdGAkLXV9lChoBkdAm4T9lEqlQGgHTegDaAhHQKaRtH2h7E51fZQoaAZHQJoKhSZSeiBoB03oA2gIR0Cmk/Gx+rlvdX2UKGgGR0CcA6ZezD4yaAdN6ANoCEdAppQ0hHLA6HV9lChoBkdAm7dIMnZ00WgHTegDaAhHQKaY2vL5h0B1fZQoaAZHQJjVG+FlCkZoB03oA2gIR0CmnOiUPhAGdX2UKGgGR0CZSb1ZTyavaAdN6ANoCEdApp8wzWPLgXV9lChoBkdAnDhjRIBikWgHTegDaAhHQKafdAQg9vF1fZQoaAZHQJr2VDv3JxNoB03oA2gIR0CmpECGetjkdX2UKGgGR0CcIEakhzNmaAdN6ANoCEdApqhRAt4A0nV9lChoBkdAlajO+dsi0WgHTegDaAhHQKaqoxcmjTN1fZQoaAZHQJrFA9FF2FFoB03oA2gIR0CmqumkvboKdX2UKGgGR0CbZToZAIIGaAdN6ANoCEdApq+u801qFnV9lChoBkdAmVbAsoUi6mgHTegDaAhHQKaztlEqlP91fZQoaAZHQJwoBmSQo1FoB03oA2gIR0CmtfeSr5qNdX2UKGgGR0CcZhuLaVUuaAdN6ANoCEdAprY31UVBU3V9lChoBkdAmpK9Fz+3pmgHTegDaAhHQKa633LV4HJ1fZQoaAZHQJubPjcVQANoB03oA2gIR0CmvuzcynDSdX2UKGgGR0CbzRY4ACGOaAdN6ANoCEdApsE408/2TXV9lChoBkdAnN8QiJO32GgHTegDaAhHQKbBfLr5ZbJ1fZQoaAZHQJkhfiLl3hZoB03oA2gIR0CmxiKv/zasdX2UKGgGR0CZy0sgdOqOaAdN6ANoCEdApspCSTyJ9HV9lChoBkdAngiphKDkEWgHTegDaAhHQKbMg9vCMxZ1fZQoaAZHQJyByu4gA6xoB03oA2gIR0CmzMGDcuandX2UKGgGR0CcJXv60pmVaAdN6ANoCEdAptFmtbLU1HV9lChoBkdAmKxPexfOU2gHTegDaAhHQKbVbf779AJ1fZQoaAZHQJxPRtYSxqxoB03oA2gIR0Cm166Q3gk1dX2UKGgGR0CXuOYHxBmgaAdN6ANoCEdAptfvLq2SdXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 20, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe72ad0c99b6280791a7e2af8cace8de5f1816b1628511211ff62d07e08342f9
3
+ size 1198350
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1753.4316133286106, "std_reward": 78.2717287866243, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T09:37:05.350395"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9d8067a4d93a49a1c728c1be3fd57e45971f8e86ad056be284d4e721f596c8d
3
+ size 2521