File size: 1,959 Bytes
a356cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: dumitrescustefan/bert-base-romanian-cased-v1
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: teacher_emo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# teacher_emo

This model is a fine-tuned version of [dumitrescustefan/bert-base-romanian-cased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0567
- F1: 0.9342
- Roc Auc: 0.9586
- Accuracy: 0.926
- Precision: 0.9322
- Recall: 0.9365

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:---------:|:------:|
| 0.1525        | 1.0   | 1000 | 0.1035          | 0.8945 | 0.9306  | 0.881    | 0.9074    | 0.8835 |
| 0.0692        | 2.0   | 2000 | 0.0659          | 0.9284 | 0.9511  | 0.92     | 0.9370    | 0.922  |
| 0.0476        | 3.0   | 3000 | 0.0571          | 0.9343 | 0.9578  | 0.929    | 0.9377    | 0.9315 |
| 0.0354        | 4.0   | 4000 | 0.0567          | 0.9342 | 0.9586  | 0.926    | 0.9322    | 0.9365 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0