mattbonnell commited on
Commit
9e458d6
·
verified ·
1 Parent(s): c7d6da6

Training in progress, step 4500, checkpoint

Browse files
last-checkpoint/config.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mattbonnell/wav2vec2-base-wonders-phonemes",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.1,
13
+ "bos_token_id": 44,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 256,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": false,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": false,
49
+ "eos_token_id": 45,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_norm": "group",
52
+ "feat_proj_dropout": 0.1,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "freeze_feat_extract_train": true,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.1,
58
+ "hidden_size": 768,
59
+ "initializer_range": 0.02,
60
+ "intermediate_size": 3072,
61
+ "layer_norm_eps": 1e-05,
62
+ "layerdrop": 0.0,
63
+ "mask_channel_length": 10,
64
+ "mask_channel_min_space": 1,
65
+ "mask_channel_other": 0.0,
66
+ "mask_channel_prob": 0.0,
67
+ "mask_channel_selection": "static",
68
+ "mask_feature_length": 10,
69
+ "mask_feature_min_masks": 0,
70
+ "mask_feature_prob": 0.0,
71
+ "mask_time_length": 10,
72
+ "mask_time_min_masks": 2,
73
+ "mask_time_min_space": 1,
74
+ "mask_time_other": 0.0,
75
+ "mask_time_prob": 0.05,
76
+ "mask_time_selection": "static",
77
+ "model_type": "wav2vec2",
78
+ "no_mask_channel_overlap": false,
79
+ "no_mask_time_overlap": false,
80
+ "num_adapter_layers": 3,
81
+ "num_attention_heads": 12,
82
+ "num_codevector_groups": 2,
83
+ "num_codevectors_per_group": 320,
84
+ "num_conv_pos_embedding_groups": 16,
85
+ "num_conv_pos_embeddings": 128,
86
+ "num_feat_extract_layers": 7,
87
+ "num_hidden_layers": 12,
88
+ "num_negatives": 100,
89
+ "output_hidden_size": 768,
90
+ "pad_token_id": 43,
91
+ "proj_codevector_dim": 256,
92
+ "tdnn_dilation": [
93
+ 1,
94
+ 2,
95
+ 3,
96
+ 1,
97
+ 1
98
+ ],
99
+ "tdnn_dim": [
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 512,
104
+ 1500
105
+ ],
106
+ "tdnn_kernel": [
107
+ 5,
108
+ 3,
109
+ 3,
110
+ 1,
111
+ 1
112
+ ],
113
+ "torch_dtype": "float16",
114
+ "transformers_version": "4.44.0",
115
+ "use_weighted_layer_sum": false,
116
+ "vocab_size": 44,
117
+ "xvector_output_dim": 512
118
+ }
last-checkpoint/global_step4500/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd96abfdf0f667ccfa2cfd9cb62a3b19397ae74016e18f9a9b36be34b59d777d
3
+ size 197282509
last-checkpoint/global_step4500/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e607167b54a0a603cf83558fcde26bf9a22c462505c6edd944df0cf79d88b06
3
+ size 180416968
last-checkpoint/global_step4500/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6649a324a9936debc9adb68629eebbdc290c8b94427ec79456bf8c4bca70922
3
+ size 180416776
last-checkpoint/global_step4500/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:120c2889e8084b7c7a7be2d6f1c1bf57407048e6a061fa2a94eb3fb8db030235
3
+ size 180416776
last-checkpoint/global_step4500/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29339698f7ac0eeffae61567df11c336897bb00b965d0b3d45347b3d1358931f
3
+ size 180416904
last-checkpoint/global_step4500/zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b8141306996a8f211eba8ce4a475a76c1def197433b6b264830b1008c76f5f1
3
+ size 180416712
last-checkpoint/global_step4500/zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:431abe8474245a2298cada3f16c163e6d1eaa928b98ab3c57a5e1d3845974e08
3
+ size 180417096
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step4500
last-checkpoint/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afa11854fc3f38256f65537c45a0706904c65c965ac824be6c1518136343cf1f
3
+ size 188836816
last-checkpoint/preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:618157755d4d53643070c0fe9f2232d72c2856d06d68fa324b284e1a0894f9fa
3
+ size 15536
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8df10d37b49d0cf833b2d40fff5a44a5d87f7f2d11d390279b5fa4ef5867a77
3
+ size 15472
last-checkpoint/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a21bf0f1ce65716c86bd9946ac949fe1b906bdb3fa7b3a9fe5bac1470a9c6526
3
+ size 15536
last-checkpoint/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd64d764026e4b1fe2b2d992bd70febb05e845122f39bb83f89256ad3d638ab1
3
+ size 15536
last-checkpoint/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d18ac7b78cd3763b57e2ecde02ade25812c67485a797876a8b1ed55514af39
3
+ size 15472
last-checkpoint/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8099d966bd9cbb159a829accfb15cf83a349f505d552231427f6776e4d7ab45b
3
+ size 15472
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6f6921664880dd0bcd6405a752e332045b3848ba423b00290e6c113f562ae1e
3
+ size 1256
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 65.21739130434783,
5
+ "eval_steps": 1500,
6
+ "global_step": 4500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.36231884057971014,
13
+ "grad_norm": 0.7415200471878052,
14
+ "learning_rate": 9.369565217391306e-06,
15
+ "loss": 2.8372,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.7246376811594203,
20
+ "grad_norm": 0.7866194844245911,
21
+ "learning_rate": 2.1086956521739132e-05,
22
+ "loss": 2.7495,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 1.0869565217391304,
27
+ "grad_norm": 1.3562049865722656,
28
+ "learning_rate": 3.304347826086956e-05,
29
+ "loss": 2.649,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 1.4492753623188406,
34
+ "grad_norm": 1.167938232421875,
35
+ "learning_rate": 4.5e-05,
36
+ "loss": 2.4866,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 1.8115942028985508,
41
+ "grad_norm": 2.102412462234497,
42
+ "learning_rate": 5.6956521739130437e-05,
43
+ "loss": 2.2804,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 2.1739130434782608,
48
+ "grad_norm": 1.8163594007492065,
49
+ "learning_rate": 6.891304347826088e-05,
50
+ "loss": 2.1049,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 2.536231884057971,
55
+ "grad_norm": 1.6761736869812012,
56
+ "learning_rate": 8.086956521739131e-05,
57
+ "loss": 1.9311,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 2.898550724637681,
62
+ "grad_norm": 2.327892303466797,
63
+ "learning_rate": 9.282608695652174e-05,
64
+ "loss": 1.7867,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 3.260869565217391,
69
+ "grad_norm": 1.8326770067214966,
70
+ "learning_rate": 0.0001,
71
+ "loss": 1.6734,
72
+ "step": 450
73
+ },
74
+ {
75
+ "epoch": 3.6231884057971016,
76
+ "grad_norm": 2.092679738998413,
77
+ "learning_rate": 0.0001,
78
+ "loss": 1.5518,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 3.9855072463768115,
83
+ "grad_norm": 1.874523401260376,
84
+ "learning_rate": 0.0001,
85
+ "loss": 1.5172,
86
+ "step": 550
87
+ },
88
+ {
89
+ "epoch": 4.3478260869565215,
90
+ "grad_norm": 2.122560977935791,
91
+ "learning_rate": 0.0001,
92
+ "loss": 1.4705,
93
+ "step": 600
94
+ },
95
+ {
96
+ "epoch": 4.710144927536232,
97
+ "grad_norm": 1.9091864824295044,
98
+ "learning_rate": 0.0001,
99
+ "loss": 1.3828,
100
+ "step": 650
101
+ },
102
+ {
103
+ "epoch": 5.072463768115942,
104
+ "grad_norm": 1.9627286195755005,
105
+ "learning_rate": 0.0001,
106
+ "loss": 1.3473,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 5.434782608695652,
111
+ "grad_norm": 1.845944881439209,
112
+ "learning_rate": 0.0001,
113
+ "loss": 1.3271,
114
+ "step": 750
115
+ },
116
+ {
117
+ "epoch": 5.797101449275362,
118
+ "grad_norm": 1.8691362142562866,
119
+ "learning_rate": 0.0001,
120
+ "loss": 1.2634,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 6.159420289855072,
125
+ "grad_norm": 2.231165647506714,
126
+ "learning_rate": 0.0001,
127
+ "loss": 1.2429,
128
+ "step": 850
129
+ },
130
+ {
131
+ "epoch": 6.521739130434782,
132
+ "grad_norm": 1.8022764921188354,
133
+ "learning_rate": 0.0001,
134
+ "loss": 1.215,
135
+ "step": 900
136
+ },
137
+ {
138
+ "epoch": 6.884057971014493,
139
+ "grad_norm": 1.918607473373413,
140
+ "learning_rate": 0.0001,
141
+ "loss": 1.1836,
142
+ "step": 950
143
+ },
144
+ {
145
+ "epoch": 7.246376811594203,
146
+ "grad_norm": 1.9824390411376953,
147
+ "learning_rate": 0.0001,
148
+ "loss": 1.1721,
149
+ "step": 1000
150
+ },
151
+ {
152
+ "epoch": 7.608695652173913,
153
+ "grad_norm": 1.8581913709640503,
154
+ "learning_rate": 0.0001,
155
+ "loss": 1.1351,
156
+ "step": 1050
157
+ },
158
+ {
159
+ "epoch": 7.971014492753623,
160
+ "grad_norm": 1.8977991342544556,
161
+ "learning_rate": 0.0001,
162
+ "loss": 1.1176,
163
+ "step": 1100
164
+ },
165
+ {
166
+ "epoch": 8.333333333333334,
167
+ "grad_norm": 2.095898389816284,
168
+ "learning_rate": 0.0001,
169
+ "loss": 1.1092,
170
+ "step": 1150
171
+ },
172
+ {
173
+ "epoch": 8.695652173913043,
174
+ "grad_norm": 2.253805637359619,
175
+ "learning_rate": 0.0001,
176
+ "loss": 1.0644,
177
+ "step": 1200
178
+ },
179
+ {
180
+ "epoch": 9.057971014492754,
181
+ "grad_norm": 2.290984869003296,
182
+ "learning_rate": 0.0001,
183
+ "loss": 1.0581,
184
+ "step": 1250
185
+ },
186
+ {
187
+ "epoch": 9.420289855072463,
188
+ "grad_norm": 1.8521511554718018,
189
+ "learning_rate": 0.0001,
190
+ "loss": 1.0616,
191
+ "step": 1300
192
+ },
193
+ {
194
+ "epoch": 9.782608695652174,
195
+ "grad_norm": 2.424522876739502,
196
+ "learning_rate": 0.0001,
197
+ "loss": 1.0235,
198
+ "step": 1350
199
+ },
200
+ {
201
+ "epoch": 10.144927536231885,
202
+ "grad_norm": 1.9674047231674194,
203
+ "learning_rate": 0.0001,
204
+ "loss": 1.018,
205
+ "step": 1400
206
+ },
207
+ {
208
+ "epoch": 10.507246376811594,
209
+ "grad_norm": 2.169654130935669,
210
+ "learning_rate": 0.0001,
211
+ "loss": 0.9963,
212
+ "step": 1450
213
+ },
214
+ {
215
+ "epoch": 10.869565217391305,
216
+ "grad_norm": 2.0874452590942383,
217
+ "learning_rate": 0.0001,
218
+ "loss": 0.9781,
219
+ "step": 1500
220
+ },
221
+ {
222
+ "epoch": 11.231884057971014,
223
+ "grad_norm": 2.0761208534240723,
224
+ "learning_rate": 0.0001,
225
+ "loss": 0.9712,
226
+ "step": 1550
227
+ },
228
+ {
229
+ "epoch": 11.594202898550725,
230
+ "grad_norm": 2.053912401199341,
231
+ "learning_rate": 0.0001,
232
+ "loss": 0.9663,
233
+ "step": 1600
234
+ },
235
+ {
236
+ "epoch": 11.956521739130435,
237
+ "grad_norm": 2.502487897872925,
238
+ "learning_rate": 0.0001,
239
+ "loss": 0.9438,
240
+ "step": 1650
241
+ },
242
+ {
243
+ "epoch": 12.318840579710145,
244
+ "grad_norm": 2.000900983810425,
245
+ "learning_rate": 0.0001,
246
+ "loss": 0.9521,
247
+ "step": 1700
248
+ },
249
+ {
250
+ "epoch": 12.681159420289855,
251
+ "grad_norm": 2.4034128189086914,
252
+ "learning_rate": 0.0001,
253
+ "loss": 0.9084,
254
+ "step": 1750
255
+ },
256
+ {
257
+ "epoch": 13.043478260869565,
258
+ "grad_norm": 1.9942097663879395,
259
+ "learning_rate": 0.0001,
260
+ "loss": 0.9016,
261
+ "step": 1800
262
+ },
263
+ {
264
+ "epoch": 13.405797101449275,
265
+ "grad_norm": 1.8242056369781494,
266
+ "learning_rate": 0.0001,
267
+ "loss": 0.9113,
268
+ "step": 1850
269
+ },
270
+ {
271
+ "epoch": 13.768115942028986,
272
+ "grad_norm": 2.07265305519104,
273
+ "learning_rate": 0.0001,
274
+ "loss": 0.8838,
275
+ "step": 1900
276
+ },
277
+ {
278
+ "epoch": 14.130434782608695,
279
+ "grad_norm": 1.9476542472839355,
280
+ "learning_rate": 0.0001,
281
+ "loss": 0.8749,
282
+ "step": 1950
283
+ },
284
+ {
285
+ "epoch": 14.492753623188406,
286
+ "grad_norm": 1.7369720935821533,
287
+ "learning_rate": 0.0001,
288
+ "loss": 0.8767,
289
+ "step": 2000
290
+ },
291
+ {
292
+ "epoch": 14.855072463768115,
293
+ "grad_norm": 1.6376968622207642,
294
+ "learning_rate": 0.0001,
295
+ "loss": 0.8649,
296
+ "step": 2050
297
+ },
298
+ {
299
+ "epoch": 15.217391304347826,
300
+ "grad_norm": 2.408804416656494,
301
+ "learning_rate": 0.0001,
302
+ "loss": 0.8546,
303
+ "step": 2100
304
+ },
305
+ {
306
+ "epoch": 15.579710144927537,
307
+ "grad_norm": 2.418651819229126,
308
+ "learning_rate": 0.0001,
309
+ "loss": 0.8557,
310
+ "step": 2150
311
+ },
312
+ {
313
+ "epoch": 15.942028985507246,
314
+ "grad_norm": 1.9724761247634888,
315
+ "learning_rate": 0.0001,
316
+ "loss": 0.8418,
317
+ "step": 2200
318
+ },
319
+ {
320
+ "epoch": 16.304347826086957,
321
+ "grad_norm": 1.8794658184051514,
322
+ "learning_rate": 0.0001,
323
+ "loss": 0.8316,
324
+ "step": 2250
325
+ },
326
+ {
327
+ "epoch": 16.666666666666668,
328
+ "grad_norm": 1.8745840787887573,
329
+ "learning_rate": 0.0001,
330
+ "loss": 0.8179,
331
+ "step": 2300
332
+ },
333
+ {
334
+ "epoch": 17.028985507246375,
335
+ "grad_norm": 2.0710532665252686,
336
+ "learning_rate": 0.0001,
337
+ "loss": 0.8078,
338
+ "step": 2350
339
+ },
340
+ {
341
+ "epoch": 17.391304347826086,
342
+ "grad_norm": 1.9383975267410278,
343
+ "learning_rate": 0.0001,
344
+ "loss": 0.806,
345
+ "step": 2400
346
+ },
347
+ {
348
+ "epoch": 17.753623188405797,
349
+ "grad_norm": 2.5431768894195557,
350
+ "learning_rate": 0.0001,
351
+ "loss": 0.795,
352
+ "step": 2450
353
+ },
354
+ {
355
+ "epoch": 18.115942028985508,
356
+ "grad_norm": 2.2625672817230225,
357
+ "learning_rate": 0.0001,
358
+ "loss": 0.7889,
359
+ "step": 2500
360
+ },
361
+ {
362
+ "epoch": 18.47826086956522,
363
+ "grad_norm": 1.995342493057251,
364
+ "learning_rate": 9.98804347826087e-05,
365
+ "loss": 0.7857,
366
+ "step": 2550
367
+ },
368
+ {
369
+ "epoch": 18.840579710144926,
370
+ "grad_norm": 2.2518508434295654,
371
+ "learning_rate": 9.975323774283072e-05,
372
+ "loss": 0.774,
373
+ "step": 2600
374
+ },
375
+ {
376
+ "epoch": 19.202898550724637,
377
+ "grad_norm": 2.207653522491455,
378
+ "learning_rate": 9.962604070305273e-05,
379
+ "loss": 0.762,
380
+ "step": 2650
381
+ },
382
+ {
383
+ "epoch": 19.565217391304348,
384
+ "grad_norm": 2.011214017868042,
385
+ "learning_rate": 9.949884366327475e-05,
386
+ "loss": 0.7556,
387
+ "step": 2700
388
+ },
389
+ {
390
+ "epoch": 19.92753623188406,
391
+ "grad_norm": 1.8435475826263428,
392
+ "learning_rate": 9.937164662349677e-05,
393
+ "loss": 0.7505,
394
+ "step": 2750
395
+ },
396
+ {
397
+ "epoch": 20.28985507246377,
398
+ "grad_norm": 1.9571833610534668,
399
+ "learning_rate": 9.924444958371878e-05,
400
+ "loss": 0.7442,
401
+ "step": 2800
402
+ },
403
+ {
404
+ "epoch": 20.652173913043477,
405
+ "grad_norm": 1.830269694328308,
406
+ "learning_rate": 9.91172525439408e-05,
407
+ "loss": 0.7288,
408
+ "step": 2850
409
+ },
410
+ {
411
+ "epoch": 21.014492753623188,
412
+ "grad_norm": 2.604294538497925,
413
+ "learning_rate": 9.899005550416282e-05,
414
+ "loss": 0.719,
415
+ "step": 2900
416
+ },
417
+ {
418
+ "epoch": 21.3768115942029,
419
+ "grad_norm": 2.1636900901794434,
420
+ "learning_rate": 9.886285846438483e-05,
421
+ "loss": 0.7301,
422
+ "step": 2950
423
+ },
424
+ {
425
+ "epoch": 21.73913043478261,
426
+ "grad_norm": 2.368319034576416,
427
+ "learning_rate": 9.873566142460685e-05,
428
+ "loss": 0.7184,
429
+ "step": 3000
430
+ },
431
+ {
432
+ "epoch": 21.73913043478261,
433
+ "eval_loss": 0.902417004108429,
434
+ "eval_runtime": 584.856,
435
+ "eval_samples_per_second": 10.03,
436
+ "eval_steps_per_second": 0.027,
437
+ "eval_wer": 0.49515657834042337,
438
+ "step": 3000
439
+ },
440
+ {
441
+ "epoch": 22.10144927536232,
442
+ "grad_norm": 2.398688793182373,
443
+ "learning_rate": 9.860846438482886e-05,
444
+ "loss": 0.708,
445
+ "step": 3050
446
+ },
447
+ {
448
+ "epoch": 22.463768115942027,
449
+ "grad_norm": 2.0567405223846436,
450
+ "learning_rate": 9.848126734505088e-05,
451
+ "loss": 0.7062,
452
+ "step": 3100
453
+ },
454
+ {
455
+ "epoch": 22.82608695652174,
456
+ "grad_norm": 2.001675844192505,
457
+ "learning_rate": 9.83540703052729e-05,
458
+ "loss": 0.7016,
459
+ "step": 3150
460
+ },
461
+ {
462
+ "epoch": 23.18840579710145,
463
+ "grad_norm": 2.003246307373047,
464
+ "learning_rate": 9.822687326549491e-05,
465
+ "loss": 0.6884,
466
+ "step": 3200
467
+ },
468
+ {
469
+ "epoch": 23.55072463768116,
470
+ "grad_norm": 2.49794340133667,
471
+ "learning_rate": 9.809967622571694e-05,
472
+ "loss": 0.6846,
473
+ "step": 3250
474
+ },
475
+ {
476
+ "epoch": 23.91304347826087,
477
+ "grad_norm": 2.2691776752471924,
478
+ "learning_rate": 9.797247918593895e-05,
479
+ "loss": 0.6746,
480
+ "step": 3300
481
+ },
482
+ {
483
+ "epoch": 24.27536231884058,
484
+ "grad_norm": 1.9415994882583618,
485
+ "learning_rate": 9.784528214616096e-05,
486
+ "loss": 0.6854,
487
+ "step": 3350
488
+ },
489
+ {
490
+ "epoch": 24.63768115942029,
491
+ "grad_norm": 2.4430294036865234,
492
+ "learning_rate": 9.771808510638299e-05,
493
+ "loss": 0.6747,
494
+ "step": 3400
495
+ },
496
+ {
497
+ "epoch": 25.0,
498
+ "grad_norm": 1.759033203125,
499
+ "learning_rate": 9.7590888066605e-05,
500
+ "loss": 0.6505,
501
+ "step": 3450
502
+ },
503
+ {
504
+ "epoch": 25.36231884057971,
505
+ "grad_norm": 1.9296367168426514,
506
+ "learning_rate": 9.746369102682701e-05,
507
+ "loss": 0.6642,
508
+ "step": 3500
509
+ },
510
+ {
511
+ "epoch": 25.72463768115942,
512
+ "grad_norm": 1.9138261079788208,
513
+ "learning_rate": 9.733649398704904e-05,
514
+ "loss": 0.6469,
515
+ "step": 3550
516
+ },
517
+ {
518
+ "epoch": 26.08695652173913,
519
+ "grad_norm": 2.2081732749938965,
520
+ "learning_rate": 9.720929694727105e-05,
521
+ "loss": 0.6512,
522
+ "step": 3600
523
+ },
524
+ {
525
+ "epoch": 26.44927536231884,
526
+ "grad_norm": 1.6682246923446655,
527
+ "learning_rate": 9.708209990749306e-05,
528
+ "loss": 0.6379,
529
+ "step": 3650
530
+ },
531
+ {
532
+ "epoch": 26.81159420289855,
533
+ "grad_norm": 2.3980038166046143,
534
+ "learning_rate": 9.695490286771509e-05,
535
+ "loss": 0.6365,
536
+ "step": 3700
537
+ },
538
+ {
539
+ "epoch": 27.17391304347826,
540
+ "grad_norm": 1.7031484842300415,
541
+ "learning_rate": 9.683024976873265e-05,
542
+ "loss": 0.6253,
543
+ "step": 3750
544
+ },
545
+ {
546
+ "epoch": 27.536231884057973,
547
+ "grad_norm": 2.0912516117095947,
548
+ "learning_rate": 9.670305272895468e-05,
549
+ "loss": 0.6257,
550
+ "step": 3800
551
+ },
552
+ {
553
+ "epoch": 27.89855072463768,
554
+ "grad_norm": 2.1551194190979004,
555
+ "learning_rate": 9.657585568917669e-05,
556
+ "loss": 0.6266,
557
+ "step": 3850
558
+ },
559
+ {
560
+ "epoch": 28.26086956521739,
561
+ "grad_norm": 1.8378657102584839,
562
+ "learning_rate": 9.64486586493987e-05,
563
+ "loss": 0.617,
564
+ "step": 3900
565
+ },
566
+ {
567
+ "epoch": 28.6231884057971,
568
+ "grad_norm": 1.9624013900756836,
569
+ "learning_rate": 9.632146160962073e-05,
570
+ "loss": 0.6194,
571
+ "step": 3950
572
+ },
573
+ {
574
+ "epoch": 28.985507246376812,
575
+ "grad_norm": 1.9267085790634155,
576
+ "learning_rate": 9.619426456984274e-05,
577
+ "loss": 0.6052,
578
+ "step": 4000
579
+ },
580
+ {
581
+ "epoch": 58.69565217391305,
582
+ "grad_norm": 1.3925776481628418,
583
+ "learning_rate": 9.606706753006477e-05,
584
+ "loss": 0.5858,
585
+ "step": 4050
586
+ },
587
+ {
588
+ "epoch": 59.42028985507246,
589
+ "grad_norm": 1.3453298807144165,
590
+ "learning_rate": 9.593987049028678e-05,
591
+ "loss": 0.5715,
592
+ "step": 4100
593
+ },
594
+ {
595
+ "epoch": 60.14492753623188,
596
+ "grad_norm": 1.5027530193328857,
597
+ "learning_rate": 9.581267345050879e-05,
598
+ "loss": 0.5599,
599
+ "step": 4150
600
+ },
601
+ {
602
+ "epoch": 60.869565217391305,
603
+ "grad_norm": 1.3528389930725098,
604
+ "learning_rate": 9.568547641073081e-05,
605
+ "loss": 0.5492,
606
+ "step": 4200
607
+ },
608
+ {
609
+ "epoch": 61.594202898550726,
610
+ "grad_norm": 1.344739317893982,
611
+ "learning_rate": 9.555827937095283e-05,
612
+ "loss": 0.5386,
613
+ "step": 4250
614
+ },
615
+ {
616
+ "epoch": 62.31884057971015,
617
+ "grad_norm": 1.4145418405532837,
618
+ "learning_rate": 9.543108233117484e-05,
619
+ "loss": 0.5349,
620
+ "step": 4300
621
+ },
622
+ {
623
+ "epoch": 63.04347826086956,
624
+ "grad_norm": 1.4277065992355347,
625
+ "learning_rate": 9.530388529139686e-05,
626
+ "loss": 0.5177,
627
+ "step": 4350
628
+ },
629
+ {
630
+ "epoch": 63.768115942028984,
631
+ "grad_norm": 1.4313771724700928,
632
+ "learning_rate": 9.517668825161888e-05,
633
+ "loss": 0.5193,
634
+ "step": 4400
635
+ },
636
+ {
637
+ "epoch": 64.4927536231884,
638
+ "grad_norm": 1.3793104887008667,
639
+ "learning_rate": 9.504949121184089e-05,
640
+ "loss": 0.5119,
641
+ "step": 4450
642
+ },
643
+ {
644
+ "epoch": 65.21739130434783,
645
+ "grad_norm": 1.312393307685852,
646
+ "learning_rate": 9.492229417206291e-05,
647
+ "loss": 0.4959,
648
+ "step": 4500
649
+ },
650
+ {
651
+ "epoch": 65.21739130434783,
652
+ "eval_loss": 1.0089221000671387,
653
+ "eval_runtime": 304.2405,
654
+ "eval_samples_per_second": 19.281,
655
+ "eval_steps_per_second": 0.026,
656
+ "eval_wer": 0.4844446722361745,
657
+ "step": 4500
658
+ }
659
+ ],
660
+ "logging_steps": 50,
661
+ "max_steps": 20700,
662
+ "num_input_tokens_seen": 0,
663
+ "num_train_epochs": 300,
664
+ "save_steps": 500,
665
+ "stateful_callbacks": {
666
+ "TrainerControl": {
667
+ "args": {
668
+ "should_epoch_stop": false,
669
+ "should_evaluate": false,
670
+ "should_log": false,
671
+ "should_save": true,
672
+ "should_training_stop": false
673
+ },
674
+ "attributes": {}
675
+ }
676
+ },
677
+ "total_flos": 5.0623526280854766e+19,
678
+ "train_batch_size": 64,
679
+ "trial_name": null,
680
+ "trial_params": null
681
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f5b7536589b8d29039b8f1644bdf0cd508f71d65372555bcc932a87903952a7
3
+ size 6264
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)