--- license: apache-2.0 base_model: mattbonnell/wav2vec2-base-wonders-phonemes tags: - generated_from_trainer datasets: - transcribed_calls metrics: - wer model-index: - name: wav2vec2-base-wonders-phonemes results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: transcribed_calls type: transcribed_calls config: default split: None args: default metrics: - name: Wer type: wer value: 0.15521933166430826 --- # wav2vec2-base-wonders-phonemes This model is a fine-tuned version of [mattbonnell/wav2vec2-base-wonders-phonemes](https://huggingface.co/mattbonnell/wav2vec2-base-wonders-phonemes) on the transcribed_calls dataset. It achieves the following results on the evaluation set: - Loss: 0.8215 - Wer: 0.1552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 512 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.0025 | 50.0 | 500 | 0.7040 | 0.1589 | | 0.0017 | 100.0 | 1000 | 0.7759 | 0.1549 | | 0.0014 | 150.0 | 1500 | 0.7451 | 0.1576 | | 0.0019 | 200.0 | 2000 | 0.7775 | 0.1596 | | 0.0022 | 250.0 | 2500 | 0.7332 | 0.1626 | | 0.0018 | 300.0 | 3000 | 0.7833 | 0.1585 | | 0.0016 | 350.0 | 3500 | 0.7756 | 0.1553 | | 0.0016 | 400.0 | 4000 | 0.7216 | 0.1610 | | 0.0019 | 450.0 | 4500 | 0.7868 | 0.1578 | | 0.0012 | 500.0 | 5000 | 0.7815 | 0.1567 | | 0.0021 | 550.0 | 5500 | 0.6860 | 0.1570 | | 0.0014 | 600.0 | 6000 | 0.7580 | 0.1573 | | 0.0014 | 650.0 | 6500 | 0.7352 | 0.1583 | | 0.0016 | 700.0 | 7000 | 0.7849 | 0.1569 | | 0.0016 | 750.0 | 7500 | 0.7794 | 0.1583 | | 0.0012 | 800.0 | 8000 | 0.7791 | 0.1573 | | 0.0012 | 850.0 | 8500 | 0.7973 | 0.1571 | | 0.001 | 900.0 | 9000 | 0.7465 | 0.1551 | | 0.0019 | 950.0 | 9500 | 0.8304 | 0.1587 | | 0.0009 | 1000.0 | 10000 | 0.7757 | 0.1579 | | 0.0013 | 1050.0 | 10500 | 0.7556 | 0.1586 | | 0.0009 | 1100.0 | 11000 | 0.7624 | 0.1566 | | 0.0009 | 1150.0 | 11500 | 0.7917 | 0.1566 | | 0.0013 | 1200.0 | 12000 | 0.7550 | 0.1598 | | 0.0009 | 1250.0 | 12500 | 0.7517 | 0.1555 | | 0.0015 | 1300.0 | 13000 | 0.7491 | 0.1586 | | 0.0013 | 1350.0 | 13500 | 0.8027 | 0.1594 | | 0.0014 | 1400.0 | 14000 | 0.7748 | 0.1577 | | 0.0015 | 1450.0 | 14500 | 0.6983 | 0.1587 | | 0.0009 | 1500.0 | 15000 | 0.7734 | 0.1583 | | 0.001 | 1550.0 | 15500 | 0.7885 | 0.1570 | | 0.0009 | 1600.0 | 16000 | 0.7818 | 0.1577 | | 0.0009 | 1650.0 | 16500 | 0.8128 | 0.1559 | | 0.0008 | 1700.0 | 17000 | 0.7904 | 0.1554 | | 0.0011 | 1750.0 | 17500 | 0.7784 | 0.1587 | | 0.0009 | 1800.0 | 18000 | 0.7910 | 0.1585 | | 0.0011 | 1850.0 | 18500 | 0.7434 | 0.1570 | | 0.001 | 1900.0 | 19000 | 0.7241 | 0.1562 | | 0.0007 | 1950.0 | 19500 | 0.8213 | 0.1541 | | 0.0008 | 2000.0 | 20000 | 0.7713 | 0.1541 | | 0.0008 | 2050.0 | 20500 | 0.8151 | 0.1542 | | 0.0007 | 2100.0 | 21000 | 0.7770 | 0.1557 | | 0.0006 | 2150.0 | 21500 | 0.8487 | 0.1553 | | 0.0007 | 2200.0 | 22000 | 0.8332 | 0.1550 | | 0.0007 | 2250.0 | 22500 | 0.7931 | 0.1559 | | 0.0006 | 2300.0 | 23000 | 0.8252 | 0.1552 | | 0.0006 | 2350.0 | 23500 | 0.8609 | 0.1543 | | 0.0005 | 2400.0 | 24000 | 0.8398 | 0.1543 | | 0.0006 | 2450.0 | 24500 | 0.7921 | 0.1535 | | 0.0006 | 2500.0 | 25000 | 0.8223 | 0.1552 | | 0.0006 | 2550.0 | 25500 | 0.7902 | 0.1561 | | 0.0005 | 2600.0 | 26000 | 0.7974 | 0.1564 | | 0.0007 | 2650.0 | 26500 | 0.7761 | 0.1556 | | 0.0004 | 2700.0 | 27000 | 0.8105 | 0.1548 | | 0.0004 | 2750.0 | 27500 | 0.7826 | 0.1542 | | 0.0003 | 2800.0 | 28000 | 0.8056 | 0.1551 | | 0.0004 | 2850.0 | 28500 | 0.7956 | 0.1534 | | 0.0005 | 2900.0 | 29000 | 0.8316 | 0.1544 | | 0.0004 | 2950.0 | 29500 | 0.8164 | 0.1545 | | 0.0005 | 3000.0 | 30000 | 0.8215 | 0.1552 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2