matthewchung74 commited on
Commit
6c6f774
1 Parent(s): 63eea5f

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +185 -79
  2. adapter_config.json +29 -0
  3. adapter_model.safetensors +3 -0
README.md CHANGED
@@ -1,113 +1,219 @@
1
- # Model Card for segmed/MedMistral-7B
 
 
 
2
 
3
- Medmistral is a language model designed to answer medical questions. It is a qlora fine tune of Mistral-7B-v0.1 that was fine-tuned on the medmcqa dataset.
4
 
5
- - **Developed by:** Segmed
6
- - **Model type:** LLM
7
 
8
- ### Model Sources https://huggingface.co/mistralai/Mistral-7B-v0.1
9
 
10
- ## Uses
11
 
12
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
13
 
14
- Prompts were generated using the following:
15
- ```
16
- def generate_question(data_point):
17
- question = f""" {data_point['question']} [0] {data_point['opa']} [1] {data_point['opb']} [2] {data_point['opc']} [3] {data_point['opd']}
18
- """
19
- return question
20
 
21
- def generate_prompt(data_point):
22
- full_prompt=f"""You are a helpful medical assistant. Your task is to answer the following question one of the options and explain why.\n### Question: {generate_question(data_point)}\n### Answer: """
23
 
24
- if data_point["cop"] != "" and data_point["exp"] != "":
25
- full_prompt= full_prompt + f"""{data_point["cop"]}\n### Explanation: {data_point["exp"]}"""
26
 
27
- return full_prompt
 
 
 
 
 
28
 
29
- generate_prompt(eval_dataset[random.randrange(len(eval_dataset))])
30
- ```
31
- Such that the resulting prompt would look like:
32
- ```
33
- You are a helpful medical assistant. Your task is to answer the following question one of the options and explain why.
34
- ### Question: "Genital elephantiasis" is seen in: [0] Rickettsia [1] Chancroid [2] Lymphogranuloma venereum [3] Syphilis
35
-
36
- ### Answer: 2
37
- ### Explanation: Ans. is. 'c' i. e., Lymphogranuloma venereum
38
- ```
 
39
 
40
  ### Direct Use
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- Below is the code tokenizer, model and helper function to generate new tokens:
45
- ```
46
- tokenizer_id = "segmed/MedMistral-7B"
47
- tokenizer = AutoTokenizer.from_pretrained(
48
- tokenizer_id,
49
- padding_side="left",
50
- # model_max_length=4096,
51
- add_eos_token=True)
52
-
53
- tokenizer.pad_token = tokenizer.eos_token
54
-
55
- def tokenize(prompt):
56
- result = tokenizer(
57
- prompt,
58
- truncation=True,
59
- padding="max_length",
60
- max_length=512,
61
- )
62
- result["labels"] = result["input_ids"].copy()
63
- return result
64
-
65
- def tokenize_prompt(data_point):
66
- full_prompt = generate_prompt(data_point)
67
- return tokenize(full_prompt)
68
-
69
- model_id = "segmed/MedMistral-7B"
70
- bnb_config = BitsAndBytesConfig(
71
- load_in_4bit=True,
72
- bnb_4bit_use_double_quant=True,
73
- bnb_4bit_quant_type="nf4",
74
- bnb_4bit_compute_dtype=torch.bfloat16
75
- )
76
-
77
- model = AutoModelForCausalLM.from_pretrained(
78
- base_model_id,
79
- quantization_config=bnb_config, # Same quantization config as before
80
- device_map="auto",
81
- trust_remote_code=True,
82
- )
83
-
84
- def generate_tokens(prompt, max_new_tokens=32):
85
- model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
86
- model.eval()
87
- with torch.no_grad():
88
- return tokenizer.decode(model.generate(**model_input, max_new_tokens=max_new_tokens, do_sample=True, top_k=0, num_return_sequences=1, temperature=0.1, eos_token_id=tokenizer.eos_token_id)[0])
89
- ```
90
 
91
  ## Bias, Risks, and Limitations
92
 
93
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
94
 
95
- This is not intended for medical advice. We would recommend further testing.
96
 
97
- ## Training Details
98
 
99
- Training occured over the course of 24 hours. 2 epochs were completed on a single A100.
 
 
 
 
 
 
 
 
 
 
100
 
101
  ### Training Data
102
 
103
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
104
 
105
- The medmcqa dataset has 193k samples, ~1k of which was used for test and ~1k for eval. This dataset was selected for its quantity of samples as well as multiple choice format for simple evaluation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
 
107
 
108
  ## Evaluation
109
 
110
  <!-- This section describes the evaluation protocols and provides the results. -->
111
 
112
- This dataset was choosen for the simplicty of evaluating. While the prompt asks for an explanation, the actually accuracy can be computed based on the multiple choice output. The results for the evaluation are coming soon.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
+
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
17
 
 
 
18
 
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
 
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
 
39
  ### Direct Use
40
 
41
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
 
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  ## Bias, Risks, and Limitations
58
 
59
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
 
61
+ [More Information Needed]
62
 
63
+ ### Recommendations
64
 
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
 
77
  ### Training Data
78
 
79
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
 
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
 
100
+ [More Information Needed]
101
 
102
  ## Evaluation
103
 
104
  <!-- This section describes the evaluation protocols and provides the results. -->
105
 
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
 
219
+ - PEFT 0.7.0.dev0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "lm_head",
21
+ "o_proj",
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd345513ae3e923077e4a1bc5691e45c3cbbcfe836b96825b06f36004a60aa97
3
+ size 170142632