matthieulel commited on
Commit
d8fa9b7
·
verified ·
1 Parent(s): 2fc02bf

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-large-1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: convnextv2-large-1k-224-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # convnextv2-large-1k-224-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4970
24
+ - Accuracy: 0.8630
25
+ - Precision: 0.8615
26
+ - Recall: 0.8630
27
+ - F1: 0.8617
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.9261 | 0.99 | 62 | 1.8153 | 0.4696 | 0.5070 | 0.4696 | 0.3875 |
62
+ | 1.2684 | 2.0 | 125 | 1.1432 | 0.6793 | 0.6395 | 0.6793 | 0.6478 |
63
+ | 0.9177 | 2.99 | 187 | 0.7477 | 0.7847 | 0.7832 | 0.7847 | 0.7720 |
64
+ | 0.6937 | 4.0 | 250 | 0.5962 | 0.8168 | 0.8145 | 0.8168 | 0.8104 |
65
+ | 0.5937 | 4.99 | 312 | 0.5862 | 0.8191 | 0.8234 | 0.8191 | 0.8167 |
66
+ | 0.5921 | 6.0 | 375 | 0.5389 | 0.8365 | 0.8454 | 0.8365 | 0.8300 |
67
+ | 0.557 | 6.99 | 437 | 0.4944 | 0.8433 | 0.8478 | 0.8433 | 0.8410 |
68
+ | 0.5522 | 8.0 | 500 | 0.5022 | 0.8427 | 0.8508 | 0.8427 | 0.8416 |
69
+ | 0.5028 | 8.99 | 562 | 0.4481 | 0.8579 | 0.8610 | 0.8579 | 0.8580 |
70
+ | 0.4801 | 10.0 | 625 | 0.4360 | 0.8551 | 0.8536 | 0.8551 | 0.8527 |
71
+ | 0.4475 | 10.99 | 687 | 0.4663 | 0.8410 | 0.8423 | 0.8410 | 0.8407 |
72
+ | 0.411 | 12.0 | 750 | 0.4444 | 0.8546 | 0.8552 | 0.8546 | 0.8538 |
73
+ | 0.4173 | 12.99 | 812 | 0.4341 | 0.8613 | 0.8627 | 0.8613 | 0.8595 |
74
+ | 0.3995 | 14.0 | 875 | 0.4380 | 0.8653 | 0.8655 | 0.8653 | 0.8637 |
75
+ | 0.3657 | 14.99 | 937 | 0.4659 | 0.8625 | 0.8633 | 0.8625 | 0.8615 |
76
+ | 0.3533 | 16.0 | 1000 | 0.4600 | 0.8602 | 0.8592 | 0.8602 | 0.8585 |
77
+ | 0.3001 | 16.99 | 1062 | 0.5069 | 0.8478 | 0.8455 | 0.8478 | 0.8450 |
78
+ | 0.318 | 18.0 | 1125 | 0.4647 | 0.8574 | 0.8576 | 0.8574 | 0.8552 |
79
+ | 0.3029 | 18.99 | 1187 | 0.4479 | 0.8681 | 0.8670 | 0.8681 | 0.8668 |
80
+ | 0.2915 | 20.0 | 1250 | 0.4772 | 0.8625 | 0.8598 | 0.8625 | 0.8586 |
81
+ | 0.2742 | 20.99 | 1312 | 0.4798 | 0.8557 | 0.8538 | 0.8557 | 0.8521 |
82
+ | 0.3067 | 22.0 | 1375 | 0.4767 | 0.8602 | 0.8573 | 0.8602 | 0.8575 |
83
+ | 0.2758 | 22.99 | 1437 | 0.5099 | 0.8506 | 0.8547 | 0.8506 | 0.8516 |
84
+ | 0.2527 | 24.0 | 1500 | 0.5016 | 0.8585 | 0.8563 | 0.8585 | 0.8565 |
85
+ | 0.253 | 24.99 | 1562 | 0.4990 | 0.8625 | 0.8605 | 0.8625 | 0.8604 |
86
+ | 0.2361 | 26.0 | 1625 | 0.4903 | 0.8602 | 0.8590 | 0.8602 | 0.8591 |
87
+ | 0.2325 | 26.99 | 1687 | 0.5062 | 0.8602 | 0.8612 | 0.8602 | 0.8600 |
88
+ | 0.2448 | 28.0 | 1750 | 0.4997 | 0.8670 | 0.8648 | 0.8670 | 0.8646 |
89
+ | 0.2354 | 28.99 | 1812 | 0.4956 | 0.8608 | 0.8586 | 0.8608 | 0.8590 |
90
+ | 0.2156 | 29.76 | 1860 | 0.4970 | 0.8630 | 0.8615 | 0.8630 | 0.8617 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:283f88dbe67e948a3aafd27627476f30883a32f2522ac6b2c57f018e078164e5
3
  size 785787096
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c51311552dee1a680509b54a2becd8631808af2d0a6fca4de43b9ff831470aa
3
  size 785787096