matthieulel commited on
Commit
a1b466a
·
verified ·
1 Parent(s): 3a847d0

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch32-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: vit-base-patch32-384-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-base-patch32-384-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [google/vit-base-patch32-384](https://huggingface.co/google/vit-base-patch32-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5674
24
+ - Accuracy: 0.8315
25
+ - Precision: 0.8313
26
+ - Recall: 0.8315
27
+ - F1: 0.8294
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 128
48
+ - eval_batch_size: 128
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 512
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.68 | 0.99 | 31 | 1.3835 | 0.5259 | 0.5014 | 0.5259 | 0.4922 |
62
+ | 0.9395 | 1.98 | 62 | 0.8286 | 0.7120 | 0.7053 | 0.7120 | 0.6986 |
63
+ | 0.7814 | 2.98 | 93 | 0.7194 | 0.7604 | 0.7515 | 0.7604 | 0.7456 |
64
+ | 0.7227 | 4.0 | 125 | 0.6271 | 0.7818 | 0.7913 | 0.7818 | 0.7743 |
65
+ | 0.6309 | 4.99 | 156 | 0.5944 | 0.7959 | 0.7959 | 0.7959 | 0.7952 |
66
+ | 0.5754 | 5.98 | 187 | 0.5448 | 0.8112 | 0.8165 | 0.8112 | 0.8087 |
67
+ | 0.5519 | 6.98 | 218 | 0.5456 | 0.8010 | 0.7990 | 0.8010 | 0.7991 |
68
+ | 0.5077 | 8.0 | 250 | 0.5458 | 0.8191 | 0.8229 | 0.8191 | 0.8160 |
69
+ | 0.5086 | 8.99 | 281 | 0.5326 | 0.8174 | 0.8181 | 0.8174 | 0.8146 |
70
+ | 0.455 | 9.98 | 312 | 0.5379 | 0.8174 | 0.8179 | 0.8174 | 0.8143 |
71
+ | 0.4532 | 10.98 | 343 | 0.5239 | 0.8247 | 0.8238 | 0.8247 | 0.8225 |
72
+ | 0.4311 | 12.0 | 375 | 0.5290 | 0.8202 | 0.8197 | 0.8202 | 0.8169 |
73
+ | 0.4399 | 12.99 | 406 | 0.5355 | 0.8236 | 0.8269 | 0.8236 | 0.8213 |
74
+ | 0.4026 | 13.98 | 437 | 0.5132 | 0.8303 | 0.8288 | 0.8303 | 0.8268 |
75
+ | 0.3964 | 14.98 | 468 | 0.5101 | 0.8269 | 0.8290 | 0.8269 | 0.8247 |
76
+ | 0.3649 | 16.0 | 500 | 0.5296 | 0.8253 | 0.8242 | 0.8253 | 0.8222 |
77
+ | 0.3353 | 16.99 | 531 | 0.5319 | 0.8236 | 0.8212 | 0.8236 | 0.8198 |
78
+ | 0.3372 | 17.98 | 562 | 0.5203 | 0.8303 | 0.8315 | 0.8303 | 0.8300 |
79
+ | 0.3281 | 18.98 | 593 | 0.5428 | 0.8315 | 0.8319 | 0.8315 | 0.8289 |
80
+ | 0.3152 | 20.0 | 625 | 0.5453 | 0.8264 | 0.8283 | 0.8264 | 0.8262 |
81
+ | 0.3016 | 20.99 | 656 | 0.5464 | 0.8224 | 0.8252 | 0.8224 | 0.8192 |
82
+ | 0.2826 | 21.98 | 687 | 0.5473 | 0.8241 | 0.8214 | 0.8241 | 0.8213 |
83
+ | 0.2832 | 22.98 | 718 | 0.5596 | 0.8275 | 0.8281 | 0.8275 | 0.8255 |
84
+ | 0.2547 | 24.0 | 750 | 0.5768 | 0.8247 | 0.8260 | 0.8247 | 0.8243 |
85
+ | 0.2682 | 24.99 | 781 | 0.5693 | 0.8230 | 0.8244 | 0.8230 | 0.8226 |
86
+ | 0.245 | 25.98 | 812 | 0.5542 | 0.8326 | 0.8324 | 0.8326 | 0.8298 |
87
+ | 0.2575 | 26.98 | 843 | 0.5665 | 0.8241 | 0.8254 | 0.8241 | 0.8234 |
88
+ | 0.2386 | 28.0 | 875 | 0.5716 | 0.8309 | 0.8314 | 0.8309 | 0.8293 |
89
+ | 0.2452 | 28.99 | 906 | 0.5659 | 0.8303 | 0.8295 | 0.8303 | 0.8279 |
90
+ | 0.2394 | 29.76 | 930 | 0.5674 | 0.8315 | 0.8313 | 0.8315 | 0.8294 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad3ec487f4d2b505db084a7d84146155a1ac045a7639a1512c83afedb86f91f2
3
  size 350166744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5976cec057dd8e4e4813d405b496f0cdc4f574f3909a095d9ecd3cdebe564de
3
  size 350166744