--- license: apache-2.0 base_model: google/vit-base-patch32-384 tags: - image-classification - vision - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-patch32-384-finetuned-galaxy10-decals results: [] --- # vit-base-patch32-384-finetuned-galaxy10-decals This model is a fine-tuned version of [google/vit-base-patch32-384](https://huggingface.co/google/vit-base-patch32-384) on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set: - Loss: 0.5542 - Accuracy: 0.8326 - Precision: 0.8324 - Recall: 0.8326 - F1: 0.8298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.68 | 0.99 | 31 | 1.3835 | 0.5259 | 0.5014 | 0.5259 | 0.4922 | | 0.9395 | 1.98 | 62 | 0.8286 | 0.7120 | 0.7053 | 0.7120 | 0.6986 | | 0.7814 | 2.98 | 93 | 0.7194 | 0.7604 | 0.7515 | 0.7604 | 0.7456 | | 0.7227 | 4.0 | 125 | 0.6271 | 0.7818 | 0.7913 | 0.7818 | 0.7743 | | 0.6309 | 4.99 | 156 | 0.5944 | 0.7959 | 0.7959 | 0.7959 | 0.7952 | | 0.5754 | 5.98 | 187 | 0.5448 | 0.8112 | 0.8165 | 0.8112 | 0.8087 | | 0.5519 | 6.98 | 218 | 0.5456 | 0.8010 | 0.7990 | 0.8010 | 0.7991 | | 0.5077 | 8.0 | 250 | 0.5458 | 0.8191 | 0.8229 | 0.8191 | 0.8160 | | 0.5086 | 8.99 | 281 | 0.5326 | 0.8174 | 0.8181 | 0.8174 | 0.8146 | | 0.455 | 9.98 | 312 | 0.5379 | 0.8174 | 0.8179 | 0.8174 | 0.8143 | | 0.4532 | 10.98 | 343 | 0.5239 | 0.8247 | 0.8238 | 0.8247 | 0.8225 | | 0.4311 | 12.0 | 375 | 0.5290 | 0.8202 | 0.8197 | 0.8202 | 0.8169 | | 0.4399 | 12.99 | 406 | 0.5355 | 0.8236 | 0.8269 | 0.8236 | 0.8213 | | 0.4026 | 13.98 | 437 | 0.5132 | 0.8303 | 0.8288 | 0.8303 | 0.8268 | | 0.3964 | 14.98 | 468 | 0.5101 | 0.8269 | 0.8290 | 0.8269 | 0.8247 | | 0.3649 | 16.0 | 500 | 0.5296 | 0.8253 | 0.8242 | 0.8253 | 0.8222 | | 0.3353 | 16.99 | 531 | 0.5319 | 0.8236 | 0.8212 | 0.8236 | 0.8198 | | 0.3372 | 17.98 | 562 | 0.5203 | 0.8303 | 0.8315 | 0.8303 | 0.8300 | | 0.3281 | 18.98 | 593 | 0.5428 | 0.8315 | 0.8319 | 0.8315 | 0.8289 | | 0.3152 | 20.0 | 625 | 0.5453 | 0.8264 | 0.8283 | 0.8264 | 0.8262 | | 0.3016 | 20.99 | 656 | 0.5464 | 0.8224 | 0.8252 | 0.8224 | 0.8192 | | 0.2826 | 21.98 | 687 | 0.5473 | 0.8241 | 0.8214 | 0.8241 | 0.8213 | | 0.2832 | 22.98 | 718 | 0.5596 | 0.8275 | 0.8281 | 0.8275 | 0.8255 | | 0.2547 | 24.0 | 750 | 0.5768 | 0.8247 | 0.8260 | 0.8247 | 0.8243 | | 0.2682 | 24.99 | 781 | 0.5693 | 0.8230 | 0.8244 | 0.8230 | 0.8226 | | 0.245 | 25.98 | 812 | 0.5542 | 0.8326 | 0.8324 | 0.8326 | 0.8298 | | 0.2575 | 26.98 | 843 | 0.5665 | 0.8241 | 0.8254 | 0.8241 | 0.8234 | | 0.2386 | 28.0 | 875 | 0.5716 | 0.8309 | 0.8314 | 0.8309 | 0.8293 | | 0.2452 | 28.99 | 906 | 0.5659 | 0.8303 | 0.8295 | 0.8303 | 0.8279 | | 0.2394 | 29.76 | 930 | 0.5674 | 0.8315 | 0.8313 | 0.8315 | 0.8294 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1