matthieulel commited on
Commit
39c5eb3
·
verified ·
1 Parent(s): 5f5bf9a

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-huge-patch14-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: vit-huge-patch14-224-in21k-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-huge-patch14-224-in21k-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5754
24
+ - Accuracy: 0.8416
25
+ - Precision: 0.8393
26
+ - Recall: 0.8416
27
+ - F1: 0.8383
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.7563 | 0.99 | 62 | 1.6011 | 0.5096 | 0.4694 | 0.5096 | 0.4415 |
62
+ | 1.0516 | 2.0 | 125 | 0.9115 | 0.7661 | 0.7679 | 0.7661 | 0.7525 |
63
+ | 0.8551 | 2.99 | 187 | 0.7590 | 0.7706 | 0.7860 | 0.7706 | 0.7653 |
64
+ | 0.6701 | 4.0 | 250 | 0.6253 | 0.8095 | 0.8013 | 0.8095 | 0.7985 |
65
+ | 0.6112 | 4.99 | 312 | 0.6058 | 0.8095 | 0.8120 | 0.8095 | 0.8083 |
66
+ | 0.6109 | 6.0 | 375 | 0.5428 | 0.8292 | 0.8353 | 0.8292 | 0.8196 |
67
+ | 0.5643 | 6.99 | 437 | 0.5230 | 0.8343 | 0.8350 | 0.8343 | 0.8332 |
68
+ | 0.5204 | 8.0 | 500 | 0.5010 | 0.8365 | 0.8391 | 0.8365 | 0.8344 |
69
+ | 0.4918 | 8.99 | 562 | 0.5000 | 0.8365 | 0.8419 | 0.8365 | 0.8348 |
70
+ | 0.4673 | 10.0 | 625 | 0.4949 | 0.8410 | 0.8394 | 0.8410 | 0.8371 |
71
+ | 0.4569 | 10.99 | 687 | 0.4803 | 0.8467 | 0.8451 | 0.8467 | 0.8446 |
72
+ | 0.4164 | 12.0 | 750 | 0.5012 | 0.8326 | 0.8314 | 0.8326 | 0.8295 |
73
+ | 0.424 | 12.99 | 812 | 0.4940 | 0.8410 | 0.8454 | 0.8410 | 0.8382 |
74
+ | 0.4045 | 14.0 | 875 | 0.4927 | 0.8523 | 0.8538 | 0.8523 | 0.8489 |
75
+ | 0.3651 | 14.99 | 937 | 0.4809 | 0.8416 | 0.8396 | 0.8416 | 0.8403 |
76
+ | 0.3512 | 16.0 | 1000 | 0.4955 | 0.8331 | 0.8306 | 0.8331 | 0.8307 |
77
+ | 0.2922 | 16.99 | 1062 | 0.5103 | 0.8399 | 0.8357 | 0.8399 | 0.8359 |
78
+ | 0.3212 | 18.0 | 1125 | 0.5197 | 0.8439 | 0.8408 | 0.8439 | 0.8412 |
79
+ | 0.3171 | 18.99 | 1187 | 0.5253 | 0.8348 | 0.8335 | 0.8348 | 0.8335 |
80
+ | 0.2896 | 20.0 | 1250 | 0.5303 | 0.8467 | 0.8456 | 0.8467 | 0.8438 |
81
+ | 0.271 | 20.99 | 1312 | 0.5571 | 0.8393 | 0.8391 | 0.8393 | 0.8366 |
82
+ | 0.2996 | 22.0 | 1375 | 0.5468 | 0.8422 | 0.8411 | 0.8422 | 0.8404 |
83
+ | 0.2663 | 22.99 | 1437 | 0.5620 | 0.8405 | 0.8393 | 0.8405 | 0.8393 |
84
+ | 0.2513 | 24.0 | 1500 | 0.5338 | 0.8467 | 0.8448 | 0.8467 | 0.8450 |
85
+ | 0.2453 | 24.99 | 1562 | 0.5562 | 0.8484 | 0.8452 | 0.8484 | 0.8446 |
86
+ | 0.2237 | 26.0 | 1625 | 0.5619 | 0.8467 | 0.8450 | 0.8467 | 0.8442 |
87
+ | 0.2296 | 26.99 | 1687 | 0.5751 | 0.8484 | 0.8496 | 0.8484 | 0.8464 |
88
+ | 0.2479 | 28.0 | 1750 | 0.5782 | 0.8461 | 0.8441 | 0.8461 | 0.8431 |
89
+ | 0.2207 | 28.99 | 1812 | 0.5746 | 0.8410 | 0.8381 | 0.8410 | 0.8378 |
90
+ | 0.2125 | 29.76 | 1860 | 0.5754 | 0.8416 | 0.8393 | 0.8416 | 0.8383 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b059c5fc4f448fd93ca6af31b94bc8017ad41438aa34600ceaadcd366a717cd6
3
  size 2523172784
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e13a58dc0b2386f84ace86bd599013f904bd3f6f17281b0f6a03d5c209c48cbe
3
  size 2523172784