|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from io import BytesIO |
|
from transformers import AutoModelForSemanticSegmentation, AutoFeatureExtractor |
|
import base64 |
|
import torch |
|
from torch import nn |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="."): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = AutoModelForSemanticSegmentation.from_pretrained(path).to(self.device).eval() |
|
self.feature_extractor = AutoFeatureExtractor.from_pretrained(path) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
images (:obj:`PIL.Image`) |
|
candiates (:obj:`list`) |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
""" |
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
|
|
|
|
encoding = self.feature_extractor(images=image, return_tensors="pt") |
|
pixel_values = encoding["pixel_values"].to(self.device) |
|
with torch.no_grad(): |
|
outputs = self.model(pixel_values=pixel_values) |
|
logits = outputs.logits |
|
upsampled_logits = nn.functional.interpolate(logits, |
|
size=image.size[::-1], |
|
mode="bilinear", |
|
align_corners=False,) |
|
pred_seg = upsampled_logits.argmax(dim=1)[0] |
|
return pred_seg.tolist() |