mattmdjaga
commited on
Commit
•
082db7d
1
Parent(s):
fdb3ea5
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: wtfpl
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
widget:
|
7 |
+
- src: https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80
|
8 |
+
example_title: Person
|
9 |
+
- src: https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg
|
10 |
+
example_title: Person
|
11 |
+
datasets:
|
12 |
+
- mattmdjaga/human_parsing_dataset
|
13 |
+
---
|
14 |
+
# Segformer B0 fine-tuned for clothes segmentation
|
15 |
+
|
16 |
+
SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation.
|
17 |
+
The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
|
21 |
+
from PIL import Image
|
22 |
+
import requests
|
23 |
+
import matplotlib.pyplot as plt
|
24 |
+
import torch.nn as nn
|
25 |
+
|
26 |
+
extractor = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b0_clothes")
|
27 |
+
model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes")
|
28 |
+
|
29 |
+
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
|
30 |
+
|
31 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
32 |
+
inputs = extractor(images=image, return_tensors="pt")
|
33 |
+
|
34 |
+
outputs = model(**inputs)
|
35 |
+
logits = outputs.logits.cpu()
|
36 |
+
|
37 |
+
upsampled_logits = nn.functional.interpolate(
|
38 |
+
logits,
|
39 |
+
size=image.size[::-1],
|
40 |
+
mode="bilinear",
|
41 |
+
align_corners=False,
|
42 |
+
)
|
43 |
+
|
44 |
+
pred_seg = upsampled_logits.argmax(dim=1)[0]
|
45 |
+
plt.imshow(pred_seg)
|
46 |
+
```
|