mattshumer commited on
Commit
2142302
·
1 Parent(s): f41ee2d

Create convert_mistral_moe_weights_to_hf.py

Browse files
Files changed (1) hide show
  1. convert_mistral_moe_weights_to_hf.py +271 -0
convert_mistral_moe_weights_to_hf.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import argparse
15
+ import gc
16
+ import json
17
+ import os
18
+ import shutil
19
+ import warnings
20
+
21
+ import torch
22
+
23
+ from transformers import (
24
+ LlamaTokenizer
25
+ )
26
+
27
+ from .modeling_moe_mistral import MixtralForCausalLM
28
+ from .configuration_moe_mistral import MixtralConfig
29
+
30
+ try:
31
+ from transformers import LlamaTokenizerFast
32
+
33
+ tokenizer_class = LlamaTokenizerFast
34
+ except ImportError as e:
35
+ warnings.warn(e)
36
+ warnings.warn(
37
+ "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
38
+ )
39
+ tokenizer_class = LlamaTokenizer
40
+
41
+ """
42
+ Sample usage:
43
+ ```
44
+ python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \
45
+ --input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path
46
+ ```
47
+ Thereafter, models can be loaded via:
48
+ ```py
49
+ from transformers import MistralForCausalLM, LlamaTokenizer
50
+ model = MistralForCausalLM.from_pretrained("/output/path")
51
+ tokenizer = LlamaTokenizer.from_pretrained("/output/path")
52
+ ```
53
+ Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
54
+ come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
55
+ """
56
+
57
+ NUM_SHARDS = {"7B": 1}
58
+
59
+
60
+ def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
61
+ return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
62
+
63
+
64
+ def read_json(path):
65
+ with open(path, "r") as f:
66
+ return json.load(f)
67
+
68
+
69
+ def write_json(text, path):
70
+ with open(path, "w") as f:
71
+ json.dump(text, f)
72
+
73
+
74
+ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True):
75
+ # for backward compatibility, before you needed the repo to be called `my_repo/model_size`
76
+ if not os.path.isfile(os.path.join(input_base_path, "params.json")):
77
+ input_base_path = os.path.join(input_base_path, model_size)
78
+
79
+ os.makedirs(model_path, exist_ok=True)
80
+ tmp_model_path = os.path.join(model_path, "tmp")
81
+ os.makedirs(tmp_model_path, exist_ok=True)
82
+
83
+ params = read_json(os.path.join(input_base_path, "params.json"))
84
+ num_shards = NUM_SHARDS[model_size]
85
+
86
+ n_layers = params["n_layers"]
87
+ n_heads = params["n_heads"]
88
+ n_heads_per_shard = n_heads // num_shards
89
+ dim = params["dim"]
90
+ dims_per_head = dim // n_heads
91
+ base = params.get("rope_theta", 100000.0)
92
+ inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
93
+ max_position_embeddings = 4096 * 8
94
+ num_experts_per_token = params["moe"]["num_experts_per_tok"]
95
+ num_experts = params["moe"]["num_experts"]
96
+
97
+
98
+ if tokenizer_path is not None:
99
+ tokenizer = tokenizer_class(tokenizer_path)
100
+ tokenizer.save_pretrained(model_path)
101
+ vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000
102
+
103
+ if "n_kv_heads" in params:
104
+ num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
105
+ num_local_key_value_heads = num_key_value_heads // num_shards
106
+ key_value_dim = dims_per_head * num_local_key_value_heads
107
+ else: # compatibility with other checkpoints
108
+ num_key_value_heads = n_heads
109
+ num_local_key_value_heads = n_heads_per_shard
110
+ key_value_dim = dim
111
+
112
+ # permute for sliced rotary
113
+ def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
114
+ return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
115
+
116
+
117
+ print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
118
+ # Load weights
119
+ loaded = [
120
+ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
121
+ for i in range(num_shards)
122
+ ]
123
+ param_count = 0
124
+ index_dict = {"weight_map": {}}
125
+ for layer_i in range(n_layers):
126
+ filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
127
+
128
+ # Sharded
129
+ # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
130
+ # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
131
+ # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
132
+
133
+ state_dict = {
134
+ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
135
+ f"layers.{layer_i}.attention_norm.weight"
136
+ ].clone(),
137
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
138
+ f"layers.{layer_i}.ffn_norm.weight"
139
+ ].clone(),
140
+ }
141
+ state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
142
+ torch.cat(
143
+ [
144
+ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
145
+ for i in range(num_shards)
146
+ ],
147
+ dim=0,
148
+ ).reshape(dim, dim)
149
+ )
150
+ state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
151
+ torch.cat(
152
+ [
153
+ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
154
+ num_local_key_value_heads, dims_per_head, dim
155
+ )
156
+ for i in range(num_shards)
157
+ ],
158
+ dim=0,
159
+ ).reshape(key_value_dim, dim),
160
+ num_key_value_heads,
161
+ key_value_dim,
162
+ dim,
163
+ )
164
+ state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
165
+ [
166
+ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim)
167
+ for i in range(num_shards)
168
+ ],
169
+ dim=0,
170
+ ).reshape(key_value_dim, dim)
171
+
172
+ state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
173
+ [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
174
+ )
175
+
176
+ for expert in range(num_experts):
177
+ state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w1.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w1.weight"]
178
+ state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w2.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w2.weight"]
179
+ state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w3.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w3.weight"]
180
+
181
+ state_dict[f"model.layers.{layer_i}.mlp.gate.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.gate.weight"]
182
+
183
+ state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
184
+ for k, v in state_dict.items():
185
+ index_dict["weight_map"][k] = filename
186
+ param_count += v.numel()
187
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
188
+
189
+ filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
190
+ state_dict = {
191
+ "model.norm.weight": loaded[0]["norm.weight"],
192
+ "model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1),
193
+ "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
194
+ }
195
+
196
+ for k, v in state_dict.items():
197
+ index_dict["weight_map"][k] = filename
198
+ param_count += v.numel()
199
+ print(param_count)
200
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
201
+
202
+ index_dict["metadata"] = {"total_size": param_count * 2}
203
+ write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
204
+ config = MixtralConfig(
205
+ hidden_size=dim,
206
+ intermediate_size=params["hidden_dim"],
207
+ num_attention_heads=params["n_heads"],
208
+ num_hidden_layers=params["n_layers"],
209
+ rms_norm_eps=params["norm_eps"],
210
+ num_key_value_heads=num_key_value_heads,
211
+ vocab_size=vocab_size,
212
+ rope_theta=base,
213
+ max_position_embeddings=max_position_embeddings,
214
+ num_experts=num_experts,
215
+ num_experts_per_token=num_experts_per_token
216
+ )
217
+ config.save_pretrained(tmp_model_path)
218
+
219
+ del state_dict
220
+ del loaded
221
+ gc.collect()
222
+
223
+ print("Loading the checkpoint in a Mistral model.")
224
+ model = MixtralForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
225
+ # Avoid saving this as part of the config.
226
+ del model.config._name_or_path
227
+ model.config.torch_dtype = torch.float16
228
+ print("Saving in the Transformers format.")
229
+ model.save_pretrained(model_path, safe_serialization=safe_serialization)
230
+ shutil.rmtree(tmp_model_path)
231
+
232
+
233
+ def write_tokenizer(tokenizer_path, input_tokenizer_path):
234
+ # Initialize the tokenizer based on the `spm` model
235
+ print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
236
+ tokenizer = tokenizer_class(input_tokenizer_path)
237
+ tokenizer.save_pretrained(tokenizer_path)
238
+
239
+
240
+ def main():
241
+ parser = argparse.ArgumentParser()
242
+ parser.add_argument(
243
+ "--input_dir",
244
+ help="Location of Mistral weights, which contains tokenizer.model and model folders",
245
+ )
246
+ parser.add_argument(
247
+ "--model_size",
248
+ choices=["7B", "tokenizer_only"],
249
+ help="'f' models correspond to the finetuned versions, and are specific to the Mistral2 official release. For more details on Mistral2, checkout the original repo: https://huggingface.co/meta-mistral",
250
+ )
251
+ parser.add_argument(
252
+ "--output_dir",
253
+ help="Location to write HF model and tokenizer",
254
+ )
255
+ parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
256
+ args = parser.parse_args()
257
+ spm_path = os.path.join(args.input_dir, "tokenizer.model")
258
+ if args.model_size != "tokenizer_only":
259
+ write_model(
260
+ model_path=args.output_dir,
261
+ input_base_path=args.input_dir,
262
+ model_size=args.model_size,
263
+ safe_serialization=args.safe_serialization,
264
+ tokenizer_path=spm_path,
265
+ )
266
+ else:
267
+ write_tokenizer(args.output_dir, spm_path)
268
+
269
+
270
+ if __name__ == "__main__":
271
+ main()