Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +178 -0
- chocolatine-3b-instruct-dpo-revised.Q4_0.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
chocolatine-3b-instruct-dpo-revised.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- fr
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- french
|
9 |
+
- chocolatine
|
10 |
+
datasets:
|
11 |
+
- jpacifico/french-orca-dpo-pairs-revised
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
---
|
14 |
+
|
15 |
+
### Chocolatine-3B-Instruct-DPO-Revised
|
16 |
+
|
17 |
+
DPO fine-tuned of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) (3.82B params)
|
18 |
+
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
|
19 |
+
Training in French also improves the model in English, surpassing the performances of its base model.
|
20 |
+
Window context = 4k tokens
|
21 |
+
|
22 |
+
Quantized 4-bit and 8-bit versions are available (see below)
|
23 |
+
A larger version Chocolatine-14B is also available in its latest [version-1.2](https://huggingface.co/jpacifico/Chocolatine-14B-Instruct-DPO-v1.2)
|
24 |
+
|
25 |
+
### Benchmarks
|
26 |
+
|
27 |
+
Chocolatine is the best-performing 3B model on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (august 2024)
|
28 |
+
[Update 2024-08-22] Chocolatine-3B also outperforms Microsoft's new model Phi-3.5-mini-instruct on the average benchmarks of the 3B category.
|
29 |
+
|
30 |
+
![image/png](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Assets/openllm_chocolatine_3B_22082024.png?raw=false)
|
31 |
+
|
32 |
+
|
33 |
+
| Metric |Value|
|
34 |
+
|-------------------|----:|
|
35 |
+
|**Avg.** |**27.63**|
|
36 |
+
|IFEval |56.23|
|
37 |
+
|BBH |37.16|
|
38 |
+
|MATH Lvl 5 |14.5|
|
39 |
+
|GPQA |9.62|
|
40 |
+
|MuSR |15.1|
|
41 |
+
|MMLU-PRO |33.21|
|
42 |
+
|
43 |
+
|
44 |
+
### MT-Bench-French
|
45 |
+
|
46 |
+
Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as LLM-judge.
|
47 |
+
Notably, this latest version of the Chocolatine-3B model is approaching the performance of Phi-3-Medium (14B) in French.
|
48 |
+
|
49 |
+
```
|
50 |
+
########## First turn ##########
|
51 |
+
score
|
52 |
+
model turn
|
53 |
+
gpt-4o-mini 1 9.28750
|
54 |
+
Chocolatine-14B-Instruct-DPO-v1.2 1 8.61250
|
55 |
+
Phi-3-medium-4k-instruct 1 8.22500
|
56 |
+
gpt-3.5-turbo 1 8.13750
|
57 |
+
Chocolatine-3B-Instruct-DPO-Revised 1 7.98750
|
58 |
+
Daredevil-8B 1 7.88750
|
59 |
+
NeuralDaredevil-8B-abliterated 1 7.62500
|
60 |
+
Phi-3-mini-4k-instruct 1 7.21250
|
61 |
+
Meta-Llama-3.1-8B-Instruct 1 7.05000
|
62 |
+
vigostral-7b-chat 1 6.78750
|
63 |
+
Mistral-7B-Instruct-v0.3 1 6.75000
|
64 |
+
gemma-2-2b-it 1 6.45000
|
65 |
+
French-Alpaca-7B-Instruct_beta 1 5.68750
|
66 |
+
vigogne-2-7b-chat 1 5.66250
|
67 |
+
|
68 |
+
########## Second turn ##########
|
69 |
+
score
|
70 |
+
model turn
|
71 |
+
gpt-4o-mini 2 8.912500
|
72 |
+
Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500
|
73 |
+
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
|
74 |
+
Phi-3-medium-4k-instruct 2 7.750000
|
75 |
+
gpt-3.5-turbo 2 7.679167
|
76 |
+
NeuralDaredevil-8B-abliterated 2 7.125000
|
77 |
+
Daredevil-8B 2 7.087500
|
78 |
+
Meta-Llama-3.1-8B-Instruct 2 6.787500
|
79 |
+
Mistral-7B-Instruct-v0.3 2 6.500000
|
80 |
+
Phi-3-mini-4k-instruct 2 6.487500
|
81 |
+
vigostral-7b-chat 2 6.162500
|
82 |
+
gemma-2-2b-it 2 6.100000
|
83 |
+
French-Alpaca-7B-Instruct_beta 2 5.487395
|
84 |
+
vigogne-2-7b-chat 2 2.775000
|
85 |
+
|
86 |
+
########## Average ##########
|
87 |
+
score
|
88 |
+
model
|
89 |
+
gpt-4o-mini 9.100000
|
90 |
+
Chocolatine-14B-Instruct-DPO-v1.2 8.475000
|
91 |
+
Phi-3-medium-4k-instruct 7.987500
|
92 |
+
Chocolatine-3B-Instruct-DPO-Revised 7.962500
|
93 |
+
gpt-3.5-turbo 7.908333
|
94 |
+
Daredevil-8B 7.487500
|
95 |
+
NeuralDaredevil-8B-abliterated 7.375000
|
96 |
+
Meta-Llama-3.1-8B-Instruct 6.918750
|
97 |
+
Phi-3-mini-4k-instruct 6.850000
|
98 |
+
Mistral-7B-Instruct-v0.3 6.625000
|
99 |
+
vigostral-7b-chat 6.475000
|
100 |
+
gemma-2-2b-it 6.275000
|
101 |
+
French-Alpaca-7B-Instruct_beta 5.587866
|
102 |
+
vigogne-2-7b-chat 4.218750
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
### Quantized versions
|
107 |
+
|
108 |
+
* **4-bit quantized version** is available here : [jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF)
|
109 |
+
|
110 |
+
* **8-bit quantized version** also available here : [jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q8_0-GGUF](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q8_0-GGUF)
|
111 |
+
|
112 |
+
* **Ollama**: [jpacifico/chocolatine-3b](https://ollama.com/jpacifico/chocolatine-3b)
|
113 |
+
|
114 |
+
```bash
|
115 |
+
ollama run jpacifico/chocolatine-3b
|
116 |
+
```
|
117 |
+
|
118 |
+
Ollama *Modelfile* example :
|
119 |
+
|
120 |
+
```bash
|
121 |
+
FROM ./chocolatine-3b-instruct-dpo-revised-q4_k_m.gguf
|
122 |
+
TEMPLATE """{{ if .System }}<|system|>
|
123 |
+
{{ .System }}<|end|>
|
124 |
+
{{ end }}{{ if .Prompt }}<|user|>
|
125 |
+
{{ .Prompt }}<|end|>
|
126 |
+
{{ end }}<|assistant|>
|
127 |
+
{{ .Response }}<|end|>
|
128 |
+
"""
|
129 |
+
PARAMETER stop """{"stop": ["<|end|>","<|user|>","<|assistant|>"]}"""
|
130 |
+
SYSTEM """You are a friendly assistant called Chocolatine."""
|
131 |
+
```
|
132 |
+
|
133 |
+
### Usage
|
134 |
+
|
135 |
+
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb)
|
136 |
+
|
137 |
+
You can also run Chocolatine using the following code:
|
138 |
+
|
139 |
+
```python
|
140 |
+
import transformers
|
141 |
+
from transformers import AutoTokenizer
|
142 |
+
|
143 |
+
# Format prompt
|
144 |
+
message = [
|
145 |
+
{"role": "system", "content": "You are a helpful assistant chatbot."},
|
146 |
+
{"role": "user", "content": "What is a Large Language Model?"}
|
147 |
+
]
|
148 |
+
tokenizer = AutoTokenizer.from_pretrained(new_model)
|
149 |
+
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
|
150 |
+
|
151 |
+
# Create pipeline
|
152 |
+
pipeline = transformers.pipeline(
|
153 |
+
"text-generation",
|
154 |
+
model=new_model,
|
155 |
+
tokenizer=tokenizer
|
156 |
+
)
|
157 |
+
|
158 |
+
# Generate text
|
159 |
+
sequences = pipeline(
|
160 |
+
prompt,
|
161 |
+
do_sample=True,
|
162 |
+
temperature=0.7,
|
163 |
+
top_p=0.9,
|
164 |
+
num_return_sequences=1,
|
165 |
+
max_length=200,
|
166 |
+
)
|
167 |
+
print(sequences[0]['generated_text'])
|
168 |
+
```
|
169 |
+
|
170 |
+
### Limitations
|
171 |
+
|
172 |
+
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
|
173 |
+
It does not have any moderation mechanism.
|
174 |
+
|
175 |
+
- **Developed by:** Jonathan Pacifico, 2024
|
176 |
+
- **Model type:** LLM
|
177 |
+
- **Language(s) (NLP):** French, English
|
178 |
+
- **License:** MIT
|
chocolatine-3b-instruct-dpo-revised.Q4_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54015331ab7fd231b8729a51505fe8452dc5f90c9b6cb608886ab0d166d67a65
|
3 |
+
size 2176176608
|