mav23 commited on
Commit
488f252
1 Parent(s): 1ad9cf9

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ darkidol-llama-3.1-8b-instruct-1.2-uncensored.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,1139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ - fr
6
+ - it
7
+ - pt
8
+ - hi
9
+ - es
10
+ - th
11
+ - zh
12
+ - ko
13
+ - ja
14
+ license: llama3.1
15
+ pipeline_tag: text-generation
16
+ tags:
17
+ - roleplay
18
+ - llama3
19
+ - sillytavern
20
+ - idol
21
+ - facebook
22
+ - meta
23
+ - pytorch
24
+ - llama
25
+ - llama-3
26
+ extra_gated_fields:
27
+ First Name: text
28
+ Last Name: text
29
+ Date of birth: date_picker
30
+ Country: country
31
+ Affiliation: text
32
+ Job title:
33
+ type: select
34
+ options:
35
+ - Student
36
+ - Research Graduate
37
+ - AI researcher
38
+ - AI developer/engineer
39
+ - Reporter
40
+ - Other
41
+ ---
42
+ # DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored
43
+ ![image/png](https://huggingface.co/aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored/resolve/main/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored.png)
44
+ ## "transformers_version" >= "4.43.1"
45
+ ## Model Information
46
+ The module combination has been readjusted to better fulfill various roles and has been adapted for mobile phones.
47
+ - Saving money(LLama 3.1;Llama-3.1-8B-Instruct more informtion look at Llama-3.1-8B-Instruct Information)
48
+ - Llama-3.1-8B-Instruct Uncensored
49
+ - Roleplay(roleplay and Dark-roleplay)
50
+ - Writing Prompts
51
+ - writing opus
52
+ - Realignment of Chinese, Japanese, and Korean
53
+ - only test en.
54
+ - Input Models input text only. Output Models generate text and code only.
55
+ - Uncensored
56
+ - Quick response
57
+ - A scholarly response akin to a thesis.(I tend to write songs extensively, to the point where one song almost becomes as detailed as a thesis. :)
58
+ - DarkIdol:Roles that you can imagine and those that you cannot imagine.
59
+ - Specialized in various role-playing scenarios
60
+
61
+ ## Uncensored Test
62
+ - pip install datasets openai
63
+ - start you openai Server,change Uncensored_Test/harmful_behaviors.py client to you Openai Server address and api_key
64
+ ```python
65
+ # Point to the local server
66
+ # change Uncensored_Test/harmful_behaviors.py client to you Openai Server address and api_key
67
+ client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
68
+ ```
69
+ - python Uncensored_Test/harmful_behaviors.py
70
+
71
+ ## Special Thanks:
72
+ ### Lewdiculous's superb gguf version, thank you for your conscientious and responsible dedication.
73
+ - https://huggingface.co/LWDCLS/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored-GGUF-IQ-Imatrix-Request
74
+ ### mradermacher's superb gguf version, thank you for your conscientious and responsible dedication.
75
+ - https://huggingface.co/mradermacher/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored-i1-GGUF
76
+ - https://huggingface.co/mradermacher/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored-GGUF
77
+
78
+ ## virtual idol Twitter
79
+ - https://x.com/aifeifei799
80
+
81
+ ## Datasets credits:
82
+ - ChaoticNeutrals
83
+ - Gryphe
84
+ - meseca
85
+ - NeverSleep Lumimaid
86
+ ## Program:
87
+ - [Uncensored: Refusal in LLMs is mediated by a single direction](https://www.lesswrong.com/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction)
88
+ - [Uncensored: Program](https://huggingface.co/blog/mlabonne/abliteration)
89
+ - [Uncensored: Program Llama 3.1 by Aifeifei799](https://huggingface.co/aifeifei799)
90
+
91
+ ## Questions
92
+ - The model's response results are for reference only, please do not fully trust them.
93
+ - This model is solely for learning and testing purposes, and errors in output are inevitable. We do not take responsibility for the output results. If the output content is to be used, it must be modified; if not modified, we will assume it has been altered.
94
+ - For commercial licensing, please refer to the Llama 3.1 agreement.
95
+
96
+ # Llama-3.1-8B-Instruct Information
97
+ ## Model Information
98
+
99
+ The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
100
+
101
+ **Model developer**: Meta
102
+
103
+ **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
104
+
105
+
106
+ <table>
107
+ <tr>
108
+ <td>
109
+ </td>
110
+ <td><strong>Training Data</strong>
111
+ </td>
112
+ <td><strong>Params</strong>
113
+ </td>
114
+ <td><strong>Input modalities</strong>
115
+ </td>
116
+ <td><strong>Output modalities</strong>
117
+ </td>
118
+ <td><strong>Context length</strong>
119
+ </td>
120
+ <td><strong>GQA</strong>
121
+ </td>
122
+ <td><strong>Token count</strong>
123
+ </td>
124
+ <td><strong>Knowledge cutoff</strong>
125
+ </td>
126
+ </tr>
127
+ <tr>
128
+ <td rowspan="3" >Llama 3.1 (text only)
129
+ </td>
130
+ <td rowspan="3" >A new mix of publicly available online data.
131
+ </td>
132
+ <td>8B
133
+ </td>
134
+ <td>Multilingual Text
135
+ </td>
136
+ <td>Multilingual Text and code
137
+ </td>
138
+ <td>128k
139
+ </td>
140
+ <td>Yes
141
+ </td>
142
+ <td rowspan="3" >15T+
143
+ </td>
144
+ <td rowspan="3" >December 2023
145
+ </td>
146
+ </tr>
147
+ <tr>
148
+ <td>70B
149
+ </td>
150
+ <td>Multilingual Text
151
+ </td>
152
+ <td>Multilingual Text and code
153
+ </td>
154
+ <td>128k
155
+ </td>
156
+ <td>Yes
157
+ </td>
158
+ </tr>
159
+ <tr>
160
+ <td>405B
161
+ </td>
162
+ <td>Multilingual Text
163
+ </td>
164
+ <td>Multilingual Text and code
165
+ </td>
166
+ <td>128k
167
+ </td>
168
+ <td>Yes
169
+ </td>
170
+ </tr>
171
+ </table>
172
+
173
+
174
+ **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
175
+
176
+ **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
177
+
178
+ **Model Release Date:** July 23, 2024.
179
+
180
+ **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
181
+
182
+ **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
183
+
184
+ Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
185
+
186
+
187
+ ## Intended Use
188
+
189
+ **Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases.
190
+
191
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.
192
+
193
+ **<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner.
194
+
195
+ ## How to use
196
+
197
+ This repository contains two versions of Meta-Llama-3.1-8B-Instruct, for use with transformers and with the original `llama` codebase.
198
+
199
+ ### Use with transformers
200
+
201
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
202
+
203
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
204
+
205
+ ```python
206
+ import transformers
207
+ import torch
208
+
209
+ model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
210
+
211
+ pipeline = transformers.pipeline(
212
+ "text-generation",
213
+ model=model_id,
214
+ model_kwargs={"torch_dtype": torch.bfloat16},
215
+ device_map="auto",
216
+ )
217
+
218
+ messages = [
219
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
220
+ {"role": "user", "content": "Who are you?"},
221
+ ]
222
+
223
+ outputs = pipeline(
224
+ messages,
225
+ max_new_tokens=256,
226
+ )
227
+ print(outputs[0]["generated_text"][-1])
228
+ ```
229
+
230
+ Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
231
+
232
+ ### Use with `llama`
233
+
234
+ Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
235
+
236
+ To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
237
+
238
+ ```
239
+ huggingface-cli download meta-llama/Meta-Llama-3.1-8B-Instruct --include "original/*" --local-dir Meta-Llama-3.1-8B-Instruct
240
+ ```
241
+
242
+ ## Hardware and Software
243
+
244
+ **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
245
+
246
+ **Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
247
+
248
+
249
+ **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
250
+
251
+
252
+ <table>
253
+ <tr>
254
+ <td>
255
+ </td>
256
+ <td><strong>Training Time (GPU hours)</strong>
257
+ </td>
258
+ <td><strong>Training Power Consumption (W)</strong>
259
+ </td>
260
+ <td><strong>Training Location-Based Greenhouse Gas Emissions</strong>
261
+ <p>
262
+ <strong>(tons CO2eq)</strong>
263
+ </td>
264
+ <td><strong>Training Market-Based Greenhouse Gas Emissions</strong>
265
+ <p>
266
+ <strong>(tons CO2eq)</strong>
267
+ </td>
268
+ </tr>
269
+ <tr>
270
+ <td>Llama 3.1 8B
271
+ </td>
272
+ <td>1.46M
273
+ </td>
274
+ <td>700
275
+ </td>
276
+ <td>420
277
+ </td>
278
+ <td>0
279
+ </td>
280
+ </tr>
281
+ <tr>
282
+ <td>Llama 3.1 70B
283
+ </td>
284
+ <td>7.0M
285
+ </td>
286
+ <td>700
287
+ </td>
288
+ <td>2,040
289
+ </td>
290
+ <td>0
291
+ </td>
292
+ </tr>
293
+ <tr>
294
+ <td>Llama 3.1 405B
295
+ </td>
296
+ <td>30.84M
297
+ </td>
298
+ <td>700
299
+ </td>
300
+ <td>8,930
301
+ </td>
302
+ <td>0
303
+ </td>
304
+ </tr>
305
+ <tr>
306
+ <td>Total
307
+ </td>
308
+ <td>39.3M
309
+ <td>
310
+ <ul>
311
+
312
+ </ul>
313
+ </td>
314
+ <td>11,390
315
+ </td>
316
+ <td>0
317
+ </td>
318
+ </tr>
319
+ </table>
320
+
321
+
322
+
323
+ The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
324
+
325
+
326
+ ## Training Data
327
+
328
+ **Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
329
+
330
+ **Data Freshness:** The pretraining data has a cutoff of December 2023.
331
+
332
+
333
+ ## Benchmark scores
334
+
335
+ In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library.
336
+
337
+ ### Base pretrained models
338
+
339
+
340
+ <table>
341
+ <tr>
342
+ <td><strong>Category</strong>
343
+ </td>
344
+ <td><strong>Benchmark</strong>
345
+ </td>
346
+ <td><strong># Shots</strong>
347
+ </td>
348
+ <td><strong>Metric</strong>
349
+ </td>
350
+ <td><strong>Llama 3 8B</strong>
351
+ </td>
352
+ <td><strong>Llama 3.1 8B</strong>
353
+ </td>
354
+ <td><strong>Llama 3 70B</strong>
355
+ </td>
356
+ <td><strong>Llama 3.1 70B</strong>
357
+ </td>
358
+ <td><strong>Llama 3.1 405B</strong>
359
+ </td>
360
+ </tr>
361
+ <tr>
362
+ <td rowspan="7" >General
363
+ </td>
364
+ <td>MMLU
365
+ </td>
366
+ <td>5
367
+ </td>
368
+ <td>macro_avg/acc_char
369
+ </td>
370
+ <td>66.7
371
+ </td>
372
+ <td>66.7
373
+ </td>
374
+ <td>79.5
375
+ </td>
376
+ <td>79.3
377
+ </td>
378
+ <td>85.2
379
+ </td>
380
+ </tr>
381
+ <tr>
382
+ <td>MMLU-Pro (CoT)
383
+ </td>
384
+ <td>5
385
+ </td>
386
+ <td>macro_avg/acc_char
387
+ </td>
388
+ <td>36.2
389
+ </td>
390
+ <td>37.1
391
+ </td>
392
+ <td>55.0
393
+ </td>
394
+ <td>53.8
395
+ </td>
396
+ <td>61.6
397
+ </td>
398
+ </tr>
399
+ <tr>
400
+ <td>AGIEval English
401
+ </td>
402
+ <td>3-5
403
+ </td>
404
+ <td>average/acc_char
405
+ </td>
406
+ <td>47.1
407
+ </td>
408
+ <td>47.8
409
+ </td>
410
+ <td>63.0
411
+ </td>
412
+ <td>64.6
413
+ </td>
414
+ <td>71.6
415
+ </td>
416
+ </tr>
417
+ <tr>
418
+ <td>CommonSenseQA
419
+ </td>
420
+ <td>7
421
+ </td>
422
+ <td>acc_char
423
+ </td>
424
+ <td>72.6
425
+ </td>
426
+ <td>75.0
427
+ </td>
428
+ <td>83.8
429
+ </td>
430
+ <td>84.1
431
+ </td>
432
+ <td>85.8
433
+ </td>
434
+ </tr>
435
+ <tr>
436
+ <td>Winogrande
437
+ </td>
438
+ <td>5
439
+ </td>
440
+ <td>acc_char
441
+ </td>
442
+ <td>-
443
+ </td>
444
+ <td>60.5
445
+ </td>
446
+ <td>-
447
+ </td>
448
+ <td>83.3
449
+ </td>
450
+ <td>86.7
451
+ </td>
452
+ </tr>
453
+ <tr>
454
+ <td>BIG-Bench Hard (CoT)
455
+ </td>
456
+ <td>3
457
+ </td>
458
+ <td>average/em
459
+ </td>
460
+ <td>61.1
461
+ </td>
462
+ <td>64.2
463
+ </td>
464
+ <td>81.3
465
+ </td>
466
+ <td>81.6
467
+ </td>
468
+ <td>85.9
469
+ </td>
470
+ </tr>
471
+ <tr>
472
+ <td>ARC-Challenge
473
+ </td>
474
+ <td>25
475
+ </td>
476
+ <td>acc_char
477
+ </td>
478
+ <td>79.4
479
+ </td>
480
+ <td>79.7
481
+ </td>
482
+ <td>93.1
483
+ </td>
484
+ <td>92.9
485
+ </td>
486
+ <td>96.1
487
+ </td>
488
+ </tr>
489
+ <tr>
490
+ <td>Knowledge reasoning
491
+ </td>
492
+ <td>TriviaQA-Wiki
493
+ </td>
494
+ <td>5
495
+ </td>
496
+ <td>em
497
+ </td>
498
+ <td>78.5
499
+ </td>
500
+ <td>77.6
501
+ </td>
502
+ <td>89.7
503
+ </td>
504
+ <td>89.8
505
+ </td>
506
+ <td>91.8
507
+ </td>
508
+ </tr>
509
+ <tr>
510
+ <td rowspan="4" >Reading comprehension
511
+ </td>
512
+ <td>SQuAD
513
+ </td>
514
+ <td>1
515
+ </td>
516
+ <td>em
517
+ </td>
518
+ <td>76.4
519
+ </td>
520
+ <td>77.0
521
+ </td>
522
+ <td>85.6
523
+ </td>
524
+ <td>81.8
525
+ </td>
526
+ <td>89.3
527
+ </td>
528
+ </tr>
529
+ <tr>
530
+ <td>QuAC (F1)
531
+ </td>
532
+ <td>1
533
+ </td>
534
+ <td>f1
535
+ </td>
536
+ <td>44.4
537
+ </td>
538
+ <td>44.9
539
+ </td>
540
+ <td>51.1
541
+ </td>
542
+ <td>51.1
543
+ </td>
544
+ <td>53.6
545
+ </td>
546
+ </tr>
547
+ <tr>
548
+ <td>BoolQ
549
+ </td>
550
+ <td>0
551
+ </td>
552
+ <td>acc_char
553
+ </td>
554
+ <td>75.7
555
+ </td>
556
+ <td>75.0
557
+ </td>
558
+ <td>79.0
559
+ </td>
560
+ <td>79.4
561
+ </td>
562
+ <td>80.0
563
+ </td>
564
+ </tr>
565
+ <tr>
566
+ <td>DROP (F1)
567
+ </td>
568
+ <td>3
569
+ </td>
570
+ <td>f1
571
+ </td>
572
+ <td>58.4
573
+ </td>
574
+ <td>59.5
575
+ </td>
576
+ <td>79.7
577
+ </td>
578
+ <td>79.6
579
+ </td>
580
+ <td>84.8
581
+ </td>
582
+ </tr>
583
+ </table>
584
+
585
+
586
+
587
+ ### Instruction tuned models
588
+
589
+
590
+ <table>
591
+ <tr>
592
+ <td><strong>Category</strong>
593
+ </td>
594
+ <td><strong>Benchmark</strong>
595
+ </td>
596
+ <td><strong># Shots</strong>
597
+ </td>
598
+ <td><strong>Metric</strong>
599
+ </td>
600
+ <td><strong>Llama 3 8B Instruct</strong>
601
+ </td>
602
+ <td><strong>Llama 3.1 8B Instruct</strong>
603
+ </td>
604
+ <td><strong>Llama 3 70B Instruct</strong>
605
+ </td>
606
+ <td><strong>Llama 3.1 70B Instruct</strong>
607
+ </td>
608
+ <td><strong>Llama 3.1 405B Instruct</strong>
609
+ </td>
610
+ </tr>
611
+ <tr>
612
+ <td rowspan="4" >General
613
+ </td>
614
+ <td>MMLU
615
+ </td>
616
+ <td>5
617
+ </td>
618
+ <td>macro_avg/acc
619
+ </td>
620
+ <td>68.5
621
+ </td>
622
+ <td>69.4
623
+ </td>
624
+ <td>82.0
625
+ </td>
626
+ <td>83.6
627
+ </td>
628
+ <td>87.3
629
+ </td>
630
+ </tr>
631
+ <tr>
632
+ <td>MMLU (CoT)
633
+ </td>
634
+ <td>0
635
+ </td>
636
+ <td>macro_avg/acc
637
+ </td>
638
+ <td>65.3
639
+ </td>
640
+ <td>73.0
641
+ </td>
642
+ <td>80.9
643
+ </td>
644
+ <td>86.0
645
+ </td>
646
+ <td>88.6
647
+ </td>
648
+ </tr>
649
+ <tr>
650
+ <td>MMLU-Pro (CoT)
651
+ </td>
652
+ <td>5
653
+ </td>
654
+ <td>micro_avg/acc_char
655
+ </td>
656
+ <td>45.5
657
+ </td>
658
+ <td>48.3
659
+ </td>
660
+ <td>63.4
661
+ </td>
662
+ <td>66.4
663
+ </td>
664
+ <td>73.3
665
+ </td>
666
+ </tr>
667
+ <tr>
668
+ <td>IFEval
669
+ </td>
670
+ <td>
671
+ </td>
672
+ <td>
673
+ </td>
674
+ <td>76.8
675
+ </td>
676
+ <td>80.4
677
+ </td>
678
+ <td>82.9
679
+ </td>
680
+ <td>87.5
681
+ </td>
682
+ <td>88.6
683
+ </td>
684
+ </tr>
685
+ <tr>
686
+ <td rowspan="2" >Reasoning
687
+ </td>
688
+ <td>ARC-C
689
+ </td>
690
+ <td>0
691
+ </td>
692
+ <td>acc
693
+ </td>
694
+ <td>82.4
695
+ </td>
696
+ <td>83.4
697
+ </td>
698
+ <td>94.4
699
+ </td>
700
+ <td>94.8
701
+ </td>
702
+ <td>96.9
703
+ </td>
704
+ </tr>
705
+ <tr>
706
+ <td>GPQA
707
+ </td>
708
+ <td>0
709
+ </td>
710
+ <td>em
711
+ </td>
712
+ <td>34.6
713
+ </td>
714
+ <td>30.4
715
+ </td>
716
+ <td>39.5
717
+ </td>
718
+ <td>41.7
719
+ </td>
720
+ <td>50.7
721
+ </td>
722
+ </tr>
723
+ <tr>
724
+ <td rowspan="4" >Code
725
+ </td>
726
+ <td>HumanEval
727
+ </td>
728
+ <td>0
729
+ </td>
730
+ <td>pass@1
731
+ </td>
732
+ <td>60.4
733
+ </td>
734
+ <td>72.6
735
+ </td>
736
+ <td>81.7
737
+ </td>
738
+ <td>80.5
739
+ </td>
740
+ <td>89.0
741
+ </td>
742
+ </tr>
743
+ <tr>
744
+ <td>MBPP ++ base version
745
+ </td>
746
+ <td>0
747
+ </td>
748
+ <td>pass@1
749
+ </td>
750
+ <td>70.6
751
+ </td>
752
+ <td>72.8
753
+ </td>
754
+ <td>82.5
755
+ </td>
756
+ <td>86.0
757
+ </td>
758
+ <td>88.6
759
+ </td>
760
+ </tr>
761
+ <tr>
762
+ <td>Multipl-E HumanEval
763
+ </td>
764
+ <td>0
765
+ </td>
766
+ <td>pass@1
767
+ </td>
768
+ <td>-
769
+ </td>
770
+ <td>50.8
771
+ </td>
772
+ <td>-
773
+ </td>
774
+ <td>65.5
775
+ </td>
776
+ <td>75.2
777
+ </td>
778
+ </tr>
779
+ <tr>
780
+ <td>Multipl-E MBPP
781
+ </td>
782
+ <td>0
783
+ </td>
784
+ <td>pass@1
785
+ </td>
786
+ <td>-
787
+ </td>
788
+ <td>52.4
789
+ </td>
790
+ <td>-
791
+ </td>
792
+ <td>62.0
793
+ </td>
794
+ <td>65.7
795
+ </td>
796
+ </tr>
797
+ <tr>
798
+ <td rowspan="2" >Math
799
+ </td>
800
+ <td>GSM-8K (CoT)
801
+ </td>
802
+ <td>8
803
+ </td>
804
+ <td>em_maj1@1
805
+ </td>
806
+ <td>80.6
807
+ </td>
808
+ <td>84.5
809
+ </td>
810
+ <td>93.0
811
+ </td>
812
+ <td>95.1
813
+ </td>
814
+ <td>96.8
815
+ </td>
816
+ </tr>
817
+ <tr>
818
+ <td>MATH (CoT)
819
+ </td>
820
+ <td>0
821
+ </td>
822
+ <td>final_em
823
+ </td>
824
+ <td>29.1
825
+ </td>
826
+ <td>51.9
827
+ </td>
828
+ <td>51.0
829
+ </td>
830
+ <td>68.0
831
+ </td>
832
+ <td>73.8
833
+ </td>
834
+ </tr>
835
+ <tr>
836
+ <td rowspan="4" >Tool Use
837
+ </td>
838
+ <td>API-Bank
839
+ </td>
840
+ <td>0
841
+ </td>
842
+ <td>acc
843
+ </td>
844
+ <td>48.3
845
+ </td>
846
+ <td>82.6
847
+ </td>
848
+ <td>85.1
849
+ </td>
850
+ <td>90.0
851
+ </td>
852
+ <td>92.0
853
+ </td>
854
+ </tr>
855
+ <tr>
856
+ <td>BFCL
857
+ </td>
858
+ <td>0
859
+ </td>
860
+ <td>acc
861
+ </td>
862
+ <td>60.3
863
+ </td>
864
+ <td>76.1
865
+ </td>
866
+ <td>83.0
867
+ </td>
868
+ <td>84.8
869
+ </td>
870
+ <td>88.5
871
+ </td>
872
+ </tr>
873
+ <tr>
874
+ <td>Gorilla Benchmark API Bench
875
+ </td>
876
+ <td>0
877
+ </td>
878
+ <td>acc
879
+ </td>
880
+ <td>1.7
881
+ </td>
882
+ <td>8.2
883
+ </td>
884
+ <td>14.7
885
+ </td>
886
+ <td>29.7
887
+ </td>
888
+ <td>35.3
889
+ </td>
890
+ </tr>
891
+ <tr>
892
+ <td>Nexus (0-shot)
893
+ </td>
894
+ <td>0
895
+ </td>
896
+ <td>macro_avg/acc
897
+ </td>
898
+ <td>18.1
899
+ </td>
900
+ <td>38.5
901
+ </td>
902
+ <td>47.8
903
+ </td>
904
+ <td>56.7
905
+ </td>
906
+ <td>58.7
907
+ </td>
908
+ </tr>
909
+ <tr>
910
+ <td>Multilingual
911
+ </td>
912
+ <td>Multilingual MGSM (CoT)
913
+ </td>
914
+ <td>0
915
+ </td>
916
+ <td>em
917
+ </td>
918
+ <td>-
919
+ </td>
920
+ <td>68.9
921
+ </td>
922
+ <td>-
923
+ </td>
924
+ <td>86.9
925
+ </td>
926
+ <td>91.6
927
+ </td>
928
+ </tr>
929
+ </table>
930
+
931
+ #### Multilingual benchmarks
932
+
933
+ <table>
934
+ <tr>
935
+ <td><strong>Category</strong>
936
+ </td>
937
+ <td><strong>Benchmark</strong>
938
+ </td>
939
+ <td><strong>Language</strong>
940
+ </td>
941
+ <td><strong>Llama 3.1 8B</strong>
942
+ </td>
943
+ <td><strong>Llama 3.1 70B</strong>
944
+ </td>
945
+ <td><strong>Llama 3.1 405B</strong>
946
+ </td>
947
+ </tr>
948
+ <tr>
949
+ <td rowspan="9" ><strong>General</strong>
950
+ </td>
951
+ <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
952
+ </td>
953
+ <td>Portuguese
954
+ </td>
955
+ <td>62.12
956
+ </td>
957
+ <td>80.13
958
+ </td>
959
+ <td>84.95
960
+ </td>
961
+ </tr>
962
+ <tr>
963
+ <td>Spanish
964
+ </td>
965
+ <td>62.45
966
+ </td>
967
+ <td>80.05
968
+ </td>
969
+ <td>85.08
970
+ </td>
971
+ </tr>
972
+ <tr>
973
+ <td>Italian
974
+ </td>
975
+ <td>61.63
976
+ </td>
977
+ <td>80.4
978
+ </td>
979
+ <td>85.04
980
+ </td>
981
+ </tr>
982
+ <tr>
983
+ <td>German
984
+ </td>
985
+ <td>60.59
986
+ </td>
987
+ <td>79.27
988
+ </td>
989
+ <td>84.36
990
+ </td>
991
+ </tr>
992
+ <tr>
993
+ <td>French
994
+ </td>
995
+ <td>62.34
996
+ </td>
997
+ <td>79.82
998
+ </td>
999
+ <td>84.66
1000
+ </td>
1001
+ </tr>
1002
+ <tr>
1003
+ <td>Hindi
1004
+ </td>
1005
+ <td>50.88
1006
+ </td>
1007
+ <td>74.52
1008
+ </td>
1009
+ <td>80.31
1010
+ </td>
1011
+ </tr>
1012
+ <tr>
1013
+ <td>Thai
1014
+ </td>
1015
+ <td>50.32
1016
+ </td>
1017
+ <td>72.95
1018
+ </td>
1019
+ <td>78.21
1020
+ </td>
1021
+ </tr>
1022
+ </table>
1023
+
1024
+
1025
+
1026
+ ## Responsibility & Safety
1027
+
1028
+ As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
1029
+
1030
+
1031
+
1032
+ * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
1033
+ * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
1034
+ * Provide protections for the community to help prevent the misuse of our models.
1035
+
1036
+
1037
+ ### Responsible deployment
1038
+
1039
+ Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
1040
+
1041
+
1042
+ #### Llama 3.1 instruct
1043
+
1044
+ Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
1045
+
1046
+ **Fine-tuning data**
1047
+
1048
+ We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
1049
+
1050
+ **Refusals and Tone**
1051
+
1052
+ Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
1053
+
1054
+
1055
+ #### Llama 3.1 systems
1056
+
1057
+ **Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
1058
+
1059
+ As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
1060
+
1061
+
1062
+ #### New capabilities
1063
+
1064
+ Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases.
1065
+
1066
+ **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
1067
+
1068
+ **Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
1069
+
1070
+
1071
+ ### Evaluations
1072
+
1073
+ We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
1074
+
1075
+ Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
1076
+
1077
+ **Red teaming**
1078
+
1079
+ For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
1080
+
1081
+ We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
1082
+
1083
+
1084
+ ### Critical and other risks
1085
+
1086
+ We specifically focused our efforts on mitigating the following critical risk areas:
1087
+
1088
+ **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
1089
+
1090
+ To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
1091
+
1092
+
1093
+ **2. Child Safety**
1094
+
1095
+ Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
1096
+
1097
+ **3. Cyber attack enablement**
1098
+
1099
+ Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
1100
+
1101
+ Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
1102
+
1103
+ Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more.
1104
+
1105
+
1106
+ ### Community
1107
+
1108
+ Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
1109
+
1110
+ We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
1111
+
1112
+ Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
1113
+
1114
+
1115
+ ## Ethical Considerations and Limitations
1116
+
1117
+ The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
1118
+
1119
+ But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
1120
+
1121
+ # The Open Anarchist License
1122
+
1123
+ Copyright 2019 `Author`
1124
+
1125
+ Permission is hereby granted, free of charge, to any peaceful non-aggressive sovereign individual or group of sovereign individuals (the "individual") obtaining a copy of this software, associated documentation files, and other forms of information (the "software"), to deal in the software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software, and to permit persons to whom the software is furnished to do so, subject to the following conditions:
1126
+
1127
+ Any individual breaking the Natural Law of Non-Aggression and Self-Defense is entirely prohibited to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software. This includes explicitly but is not limited to,
1128
+
1129
+ * any individual engaging in, or encouraging murder, assault, theft, rape, trespassing, coercion, lying, or any other initiation of aggressive violence against the private property of peaceful individuals;
1130
+ * any officer, contractor, subcontractor, or staff acting on behalf of, or being funded by any government or law enforcement agency;
1131
+ * any officer, contractor, subcontractor, or staff associated with the investigation of any active criminal proceedings of victimless crimes;
1132
+ * any individual relying on monopolistic privilege licenses granted by any government or law enforcement agency;
1133
+ * any officer, contractor, subcontractor, or staff of any surveillance effort acting in an official and/or commercial capacity or being contracted by any government or law enforcement agency;
1134
+ * any individual investigating "money laundering" or "unexplained wealth"; or
1135
+ * any individual aggressively enforcing "intellectual property rights".
1136
+
1137
+ The above copyright notice and this permission notice shall be included or linked to in all copies or substantial portions of the Software.
1138
+
1139
+ Don't trust, verify. The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, wether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.
darkidol-llama-3.1-8b-instruct-1.2-uncensored.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cc131ab1720e69e057d0f78f3f231a103c86a745a2deefcd3ad706c54daf1ff
3
+ size 4661212544