mav23 commited on
Commit
f9b56e1
1 Parent(s): 168ee0e

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +115 -0
  3. stablebeluga2.Q4_0.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ stablebeluga2.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - conceptofmind/cot_submix_original
4
+ - conceptofmind/flan2021_submix_original
5
+ - conceptofmind/t0_submix_original
6
+ - conceptofmind/niv2_submix_original
7
+ language:
8
+ - en
9
+ pipeline_tag: text-generation
10
+ ---
11
+ # Stable Beluga 2
12
+
13
+ Use [Stable Chat (Research Preview)](https://chat.stability.ai/chat) to test Stability AI's best language models for free
14
+
15
+ ## Model Description
16
+
17
+ `Stable Beluga 2` is a Llama2 70B model finetuned on an Orca style Dataset
18
+
19
+ ## Usage
20
+
21
+ Start chatting with `Stable Beluga 2` using the following code snippet:
22
+
23
+ ```python
24
+ import torch
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
26
+
27
+ tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga2", use_fast=False)
28
+ model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga2", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
29
+ system_prompt = "### System:\nYou are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"
30
+
31
+ message = "Write me a poem please"
32
+ prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
33
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
34
+ output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
35
+
36
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
37
+ ```
38
+
39
+ Stable Beluga 2 should be used with this prompt format:
40
+ ```
41
+ ### System:
42
+ This is a system prompt, please behave and help the user.
43
+
44
+ ### User:
45
+ Your prompt here
46
+
47
+ ### Assistant:
48
+ The output of Stable Beluga 2
49
+ ```
50
+
51
+ ## Other Beluga Models
52
+
53
+ [StableBeluga 1 - Delta](https://huggingface.co/stabilityai/StableBeluga1-Delta)
54
+ [StableBeluga 13B](https://huggingface.co/stabilityai/StableBeluga-13B)
55
+ [StableBeluga 7B](https://huggingface.co/stabilityai/StableBeluga-7B)
56
+
57
+ ## Model Details
58
+
59
+ * **Developed by**: [Stability AI](https://stability.ai/)
60
+ * **Model type**: Stable Beluga 2 is an auto-regressive language model fine-tuned on Llama2 70B.
61
+ * **Language(s)**: English
62
+ * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
63
+ * **License**: Fine-tuned checkpoints (`Stable Beluga 2`) is licensed under the [STABLE BELUGA NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT](https://huggingface.co/stabilityai/StableBeluga2/blob/main/LICENSE.txt)
64
+ * **Contact**: For questions and comments about the model, please email `lm@stability.ai`
65
+
66
+ ### Training Dataset
67
+
68
+ ` Stable Beluga 2` is trained on our internal Orca-style dataset
69
+
70
+ ### Training Procedure
71
+
72
+ Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:
73
+
74
+ | Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas |
75
+ |-------------------|------------|---------------|-------------------|---------|--------------|-------------|
76
+ | Orca pt1 packed | 256 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
77
+ | Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
78
+
79
+ ## Ethical Considerations and Limitations
80
+
81
+ Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model.
82
+
83
+ ## How to cite
84
+
85
+ ```bibtex
86
+ @misc{StableBelugaModels,
87
+ url={[https://huggingface.co/stabilityai/StableBeluga2](https://huggingface.co/stabilityai/StableBeluga2)},
88
+ title={Stable Beluga models},
89
+ author={Mahan, Dakota and Carlow, Ryan and Castricato, Louis and Cooper, Nathan and Laforte, Christian}
90
+ }
91
+ ```
92
+
93
+ ## Citations
94
+
95
+ ```bibtext
96
+ @misc{touvron2023llama,
97
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
98
+ author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
99
+ year={2023},
100
+ eprint={2307.09288},
101
+ archivePrefix={arXiv},
102
+ primaryClass={cs.CL}
103
+ }
104
+ ```
105
+
106
+ ```bibtext
107
+ @misc{mukherjee2023orca,
108
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
109
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
110
+ year={2023},
111
+ eprint={2306.02707},
112
+ archivePrefix={arXiv},
113
+ primaryClass={cs.CL}
114
+ }
115
+ ```
stablebeluga2.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7953d0d7f4ebee6f0c392aa59ca2e284befbba6b314086d6334fe8e4d105be40
3
+ size 38872249760