Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +168 -0
- chinese-text-correction-1.5b.Q4_0.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
chinese-text-correction-1.5b.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: Qwen/Qwen2.5-1.5B-Instruct
|
4 |
+
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- shibing624/chinese_text_correction
|
7 |
+
language:
|
8 |
+
- zh
|
9 |
+
metrics:
|
10 |
+
- f1
|
11 |
+
tags:
|
12 |
+
- text-generation-inference
|
13 |
+
widget:
|
14 |
+
- text: "文本纠错:\n少先队员因该为老人让坐。"
|
15 |
+
---
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# Chinese Text Correction Model
|
20 |
+
中文文本纠错模型chinese-text-correction-1.5b:用于拼写纠错、语法纠错
|
21 |
+
|
22 |
+
`shibing624/chinese-text-correction-1.5b` evaluate test data:
|
23 |
+
|
24 |
+
The overall performance of CSC **test**:
|
25 |
+
|
26 |
+
|input_text|predict_text|
|
27 |
+
|:--- |:--- |
|
28 |
+
|文本纠错:\n少先队员因该为老人让坐。|少先队员应该为老人让座。|
|
29 |
+
|
30 |
+
# Models
|
31 |
+
|
32 |
+
| Name | Base Model | Download |
|
33 |
+
|-----------------|-------------------|-----------------------------------------------------------------------|
|
34 |
+
| chinese-text-correction-1.5b | Qwen/Qwen2.5-1.5B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-1.5b) |
|
35 |
+
| chinese-text-correction-1.5b-lora | Qwen/Qwen2.5-1.5B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-1.5b-lora) |
|
36 |
+
| chinese-text-correction-7b | Qwen/Qwen2.5-7B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-7b) |
|
37 |
+
| chinese-text-correction-7b-lora | Qwen/Qwen2.5-7B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-7b-lora) |
|
38 |
+
|
39 |
+
|
40 |
+
### 评估结果
|
41 |
+
- 评估指标:F1
|
42 |
+
- CSC(Chinese Spelling Correction): 拼写纠错模型,表示模型可以处理音似、形似、语法等长度对齐的错误纠正
|
43 |
+
- CTC(CHinese Text Correction): 文本纠错模型,表示模型支持拼写、语法等长度对齐的错误纠正,还可以处理多字、少字等长度不对齐的错误纠正
|
44 |
+
- GPU:Tesla V100,显存 32 GB
|
45 |
+
|
46 |
+
| Model Name | Model Link | Base Model | Avg | SIGHAN-2015 | EC-LAW | MCSC | GPU/CPU | QPS |
|
47 |
+
|:-----------------|:------------------------------------------------------------------------------------------------------------------------|:---------------------------|:-----------|:------------|:-------|:-------|:--------|:--------|
|
48 |
+
| Kenlm-CSC | [shibing624/chinese-kenlm-klm](https://huggingface.co/shibing624/chinese-kenlm-klm) | kenlm | 0.3409 | 0.3147 | 0.3763 | 0.3317 | CPU | 9 |
|
49 |
+
| Mengzi-T5-CSC | [shibing624/mengzi-t5-base-chinese-correction](https://huggingface.co/shibing624/mengzi-t5-base-chinese-correction) | mengzi-t5-base | 0.3984 | 0.7758 | 0.3156 | 0.1039 | GPU | 214 |
|
50 |
+
| ERNIE-CSC | [PaddleNLP/ernie-csc](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/legacy/examples/text_correction/ernie-csc) | PaddlePaddle/ernie-1.0-base-zh | 0.4353 | 0.8383 | 0.3357 | 0.1318 | GPU | 114 |
|
51 |
+
| MacBERT-CSC | [shibing624/macbert4csc-base-chinese](https://huggingface.co/shibing624/macbert4csc-base-chinese) | hfl/chinese-macbert-base | 0.3993 | 0.8314 | 0.1610 | 0.2055 | GPU | **224** |
|
52 |
+
| ChatGLM3-6B-CSC | [shibing624/chatglm3-6b-csc-chinese-lora](https://huggingface.co/shibing624/chatglm3-6b-csc-chinese-lora) | THUDM/chatglm3-6b | 0.4538 | 0.6572 | 0.4369 | 0.2672 | GPU | 3 |
|
53 |
+
| Qwen2.5-1.5B-CTC | [shibing624/chinese-text-correction-1.5b](https://huggingface.co/shibing624/chinese-text-correction-1.5b) | Qwen/Qwen2.5-1.5B-Instruct | 0.6802 | 0.3032 | 0.7846 | 0.9529 | GPU | 6 |
|
54 |
+
| Qwen2.5-7B-CTC | [shibing624/chinese-text-correction-7b](https://huggingface.co/shibing624/chinese-text-correction-7b) | Qwen/Qwen2.5-7B-Instruct | **0.8225** | 0.4917 | 0.9798 | 0.9959 | GPU | 3 |
|
55 |
+
|
56 |
+
## Usage (pycorrector)
|
57 |
+
|
58 |
+
本项目开源在`pycorrector`项目:[pycorrector](https://github.com/shibing624/pycorrector),可支持大模型微调后用于文本纠错,通过如下命令调用:
|
59 |
+
|
60 |
+
Install package:
|
61 |
+
```shell
|
62 |
+
pip install -U pycorrector
|
63 |
+
```
|
64 |
+
|
65 |
+
```python
|
66 |
+
from pycorrector.gpt.gpt_corrector import GptCorrector
|
67 |
+
|
68 |
+
if __name__ == '__main__':
|
69 |
+
error_sentences = [
|
70 |
+
'真麻烦你了。希望你们好好的跳无',
|
71 |
+
'少先队员因该为老人让坐',
|
72 |
+
'机七学习是人工智能领遇最能体现智能的一个分知',
|
73 |
+
'一只小鱼船浮在平净的河面上',
|
74 |
+
'我的家乡是有明的渔米之乡',
|
75 |
+
]
|
76 |
+
m = GptCorrector("shibing624/chinese-text-correction-1.5b")
|
77 |
+
|
78 |
+
batch_res = m.correct_batch(error_sentences)
|
79 |
+
for i in batch_res:
|
80 |
+
print(i)
|
81 |
+
print()
|
82 |
+
```
|
83 |
+
|
84 |
+
## Usage (HuggingFace Transformers)
|
85 |
+
Without [pycorrector](https://github.com/shibing624/pycorrector), you can use the model like this:
|
86 |
+
|
87 |
+
First, you pass your input through the transformer model, then you get the generated sentence.
|
88 |
+
|
89 |
+
Install package:
|
90 |
+
```
|
91 |
+
pip install transformers
|
92 |
+
```
|
93 |
+
|
94 |
+
```python
|
95 |
+
# pip install transformers
|
96 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
97 |
+
checkpoint = "shibing624/chinese-text-correction-1.5b"
|
98 |
+
|
99 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
101 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
102 |
+
|
103 |
+
input_content = "文本纠错:\n少先队员因该为老人让坐。"
|
104 |
+
|
105 |
+
messages = [{"role": "user", "content": input_content}]
|
106 |
+
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
|
107 |
+
|
108 |
+
print(input_text)
|
109 |
+
|
110 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
111 |
+
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
112 |
+
|
113 |
+
print(tokenizer.decode(outputs[0]))
|
114 |
+
```
|
115 |
+
|
116 |
+
output:
|
117 |
+
```shell
|
118 |
+
少先队员应该为老人让座。
|
119 |
+
```
|
120 |
+
|
121 |
+
|
122 |
+
模型文件组成:
|
123 |
+
```
|
124 |
+
shibing624/chinese-text-correction-1.5b
|
125 |
+
|-- added_tokens.json
|
126 |
+
|-- config.json
|
127 |
+
|-- generation_config.json
|
128 |
+
|-- merges.txt
|
129 |
+
|-- model.safetensors
|
130 |
+
|-- model.safetensors.index.json
|
131 |
+
|-- README.md
|
132 |
+
|-- special_tokens_map.json
|
133 |
+
|-- tokenizer_config.json
|
134 |
+
|-- tokenizer.json
|
135 |
+
`-- vocab.json
|
136 |
+
```
|
137 |
+
|
138 |
+
#### 训练参数:
|
139 |
+
|
140 |
+
- num_epochs: 8
|
141 |
+
- batch_size: 4
|
142 |
+
- steps: 36000
|
143 |
+
- eval_loss: 0.14
|
144 |
+
- base model: Qwen/Qwen2.5-1.5B-Instruct
|
145 |
+
- train data: [shibing624/chinese_text_correction](https://huggingface.co/datasets/shibing624/chinese_text_correction)
|
146 |
+
- train time: 9 days 8 hours
|
147 |
+
- eval_loss: ![](https://huggingface.co/shibing624/chinese-text-correction-1.5b-lora/resolve/main/eval_loss_1.5b.png)
|
148 |
+
- train_loss: ![](https://huggingface.co/shibing624/chinese-text-correction-1.5b-lora/resolve/main/train_loss_1.5b.png)
|
149 |
+
|
150 |
+
### 训练数据集
|
151 |
+
#### 中文纠错数据集
|
152 |
+
|
153 |
+
- 数据:[shibing624/chinese_text_correction](https://huggingface.co/datasets/shibing624/chinese_text_correction)
|
154 |
+
|
155 |
+
|
156 |
+
如果需要训练Qwen的纠错模型,请参考[https://github.com/shibing624/pycorrector](https://github.com/shibing624/pycorrector) 或者 [https://github.com/shibing624/MedicalGPT](https://github.com/shibing624/MedicalGPT)
|
157 |
+
|
158 |
+
## Citation
|
159 |
+
|
160 |
+
```latex
|
161 |
+
@software{pycorrector,
|
162 |
+
author = {Xu Ming},
|
163 |
+
title = {pycorrector: Implementation of language model finetune},
|
164 |
+
year = {2024},
|
165 |
+
url = {https://github.com/shibing624/pycorrector},
|
166 |
+
}
|
167 |
+
```
|
168 |
+
|
chinese-text-correction-1.5b.Q4_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c17743a891f3c2d52b329b6f0f05037fd6316c3a685e5f15a61ccd6c3aedcd44
|
3 |
+
size 934955040
|